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Abstract— Visualization for machine learning (VIS4ML) research aims to help experts apply their prior knowledge to develop,
understand, and improve the performance of machine learning models. In conceiving VIS4ML systems, researchers characterize the
nature of human knowledge to support human-in-the-loop tasks, design interactive visualizations to make ML components interpretable
and elicit knowledge, and evaluate the effectiveness of human-model interchange. We survey recent VIS4ML papers to assess the
generalizability of research contributions and claims in enabling human-in-the-loop ML. Our results show potential gaps between the
current scope of VIS4ML research and aspirations for its use in practice. We find that while papers motivate that VIS4ML systems
are applicable beyond the specific conditions studied, conclusions are often overfitted to non-representative scenarios, are based
on interactions with a small set of ML experts and well-understood datasets, fail to acknowledge crucial dependencies, and hinge
on decisions that lack justification. We discuss approaches to close the gap between aspirations and research claims and suggest
documentation practices to report generality constraints that better acknowledge the exploratory nature of VIS4ML research.

Index Terms—VIS4ML, Visualization, Machine learning, Human-in-the-loop, Human Knowledge, Generalizability, Survey.

1 INTRODUCTION

Visualization for machine learning (VIS4ML) research aims to support
human involvement in the machine learning (ML) process by making
ML models interpretable to humans [62]. The underlying assumption
is that by providing experts such as ML engineers and domain special-
ists with appropriate visual representations of the modeling pipeline,
they will be able to combine their relevant prior knowledge with the
machine representation toward positive ends - i.e., human-in-the-loop
(HITL) machine learning. For instance, DataDebugger [88] supports
human correction of mislabeled training data, INFUSE [37] enables
domain expert involvement in feature engineering, and ConceptEx-
plainer [27] allows analysts to extract concept-based explanations for
explainable AI tasks. In an ideal scenario, the knowledge generated
through bespoke VIS4ML contributions can influence real-world ML
workflows, in which practitioners can use these tools to interpret and
develop performant models.

In this paper, we consider evidence of the generalizability of
VIS4ML research. Generalizability concerns the alignment between
the general claims made about the effectiveness and applicability of
VIS4ML contributions and the quantitative or qualitative evidence pre-
sented to validate those claims. In VIS4ML research, this depends on
how design hypotheses – propositions about effective visualization and
interaction choices for meeting HITL task needs – are operationalized
in light of the researchers’ generalization goals. This includes under-
standing how papers go from aspirations about how VIS4ML systems
can enable HITL tasks, to specific intended effects of involving human
knowledge in a pipeline, to particular design instantiations meant to
realize these effects, to the evaluation of those design artifacts, to the
conclusions that are ultimately drawn about effective VIS4ML strate-
gies. When design hypotheses involve unstated assumptions that are
overlooked in interpreting the results–for example, about the degree of
knowledge people have of model components–we should not expect
claims to generalize to settings where those assumptions are not in place.
Further, we would expect claims entailed by the design hypotheses to be
directly validated by evidence of use, including evaluating the validity
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and robustness of human-generated insights and how these ultimately
affect the target learning pipeline or downstream outcomes. However,
causal inferences that users generate to explain model performance may
not be verifiable without further data collection, or researchers may
lack visibility into the larger lifecycle of a model that they intend to
affect. When research claims are based on unstated dependencies and
overlooked gaps in evidence, the claimed effects of applying VIS4ML
contributions are unlikely to realize in practice.

In this work, we critically examine a set of 52 VIS4ML papers to
characterize the space of design hypotheses and evaluation practices
and identify gaps that could hinder the adoption of VIS4ML research in
practice. Our analysis surfaces patterns in how papers envision the role
of human knowledge in VIS4ML, the knowledge assumptions made of
system users, the algorithms and interpretability approaches they rely
on, and the approaches they take to evaluate their hypotheses. We find
that a majority of VIS4ML papers aim to combine visualizations and
interactivity to bring about concrete improvements to an ML pipeline.
Yet, more often than not, these improvements are not directly evaluated.
We also identify common dependencies, for example, on the same
small group of experts during development and evaluation, on well-
known datasets, and on post-hoc interpretability methods that often lack
faithfulness guarantees — that may threaten the ability of independent
authors or practitioners to experience the same gains when they apply
the contributed approaches in related contexts.

Broadly, our analysis finds the current scope of human-in-the-loop
VIS4ML is somewhat limited and draws attention to potential threats
to the practical adoption of VIS4ML contributions and the generaliz-
ability of research claims. To bridge the gap between bespoke VIS4ML
contributions and its use in ML production workflows, we make short
and longer-term recommendations for action, including transparent doc-
umentation of unstated assumptions and constraints, tightening loose
derivation chains in the logical progression from aspirations for human
knowledge integration to designs and their evaluation, and exploring
partnerships with the broader human-centered AI research community.

2 BACKGROUND

2.1 Taxonomizing VIS4ML

Existing surveys of visual analytics for ML research [19, 24, 62, 63, 70,
71,91] taxonomizes goals, activities, and human inputs to the modeling
pipeline (separate from the indirect use of ML for improving visual
analytics pipelines, e.g., [6]). This includes data quality and feature en-
gineering before model building, understanding and diagnosing issues
with parameters or training dynamics during model fitting and selec-
tion, and reasoning about results after model building. Taxonomies also
capture differences in intended audiences for VIS4ML tools, from ML
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experts to non-experts or domain experts [24, 63, 91], and commonly
used visualization and interaction techniques [24, 63].

Most relevant to our work is Sperlle et al.’s [70] survey of human-
centered evaluations of human-centered machine learning, which char-
acterizes heterogeneity in evaluation styles and assesses data types,
analysis tasks, and interactivity in VIS4ML. They differentiate the
knowledge requirements of VIS4ML users, including ML versus do-
main expertise. However, because their scope is broader than ours
(nearly half of the 71 papers they survey study explainable AI tech-
niques in lab settings, similar to several other recent surveys [52, 71]),
their results are less targeted to visualization-specific research. Ad-
ditionally, the aim of our work is unique in that, we are interested in
the alignment between researchers’ aspirations and claims and their
methods, including how knowledge is claimed to be produced through
moving from research aspirations to specific design hypotheses to the
validation of those hypotheses. Hence we focus on the epistemic status
of VIS4ML and the generalizability of results than prior surveys.

2.2 Knowledge generation through visual data analysis
We investigate the forms of knowledge and insight authors describe to
motivate and evaluate VIS4ML systems. Our work relates to knowledge
generation (KG) models used in visual analytics [18,20,64], which aim
to explain the process by which analysts generate knowledge in working
with interactive visualizations of data or models. For instance, Sacha et
al.’s KG model [64] adapts sensemaking concepts to describe how an
analyst engages in iterative exploration and verification loops with an
interactive visualization system to generate knowledge. The process
is conceptualized through loops in which the analyst takes actions,
referring to tasks that generate tangible, unique responses from the
visual analytics system, to explore visualized evidence for findings, or
visual patterns, perhaps driven by an analytical goal. The identification
of findings leads either to further interaction with the system or to new
insights when the analyst applies their prior knowledge to interpret the
results within the domain-specific setting.

Specific to VIS4ML, Sacha et al. [62] contribute an ontology that
breaks complex sequences of human interactions with a VIS4ML sys-
tem into K-Driven processes, which take in human input to control
the process, K-Oriented processes, which output information for hu-
mans to process, and K-Centered processes, which are designed for
human interaction and cannot be easily further broken down. While
they contribute a language for representing interactions, we empirically
investigate how such processes are studied in the VIS4ML literature
and the sorts of human knowledge and capabilities they assume. Others
have studied the variety of techniques by which prior knowledge can be
integrated into machine learning systems [26,36, 77], for example, how
the integration of domain knowledge in machine learning pipelines
more broadly is often informal and under-described in applied ML
research [36], which our results corroborate for VIS4ML.

2.3 Challenges in Evaluating Human-in-the-loop ML
Prior work has noted challenges in choosing success metrics for
VIS4ML tools to identify whether a human-machine collaboration
is successful [5]. When metrics or “signals” of performance that a
human-in-the-loop system surfaces are locally relevant but poorly con-
nected to the downstream application for which the model is intended,
then human attempts to optimize performance for these metrics, such
as by cleaning input data, may not effect or even hurt downstream
outcomes [55]. Similarly, when the specific contributions of a human
versus an automated component are not well defined, it is difficult to
identify the proper evaluation for the research claims [5, 70].

Our aim to uncover hidden dependencies in VIS4ML aligns with
calls for more reproducible, replicable, and robust ML research [23],
especially ML system evaluations [40]. Similar to the replication crisis
in experimental research, overlooked dependencies, sources of variance,
and conventions that encourage bold claims can lead researchers to
misattribute performance differences to parts of an ML pipeline [29].

3 METHODOLOGY

To characterize the nature of VIS4ML research contributions with a par-
ticular emphasis on human-in-the-loop machine learning, we conducted

a qualitative survey of recent research papers proposing and evaluating
VIS4ML tools. Figure 1 shows an overview of our six month-long
paper collection process, analysis, and discussion of findings.

3.1 Paper Selection
We took a two-fold approach to identify papers of interest. First, we
seeded our list of papers with Yuan et al.’s set of 259 papers published
between 2010-2020 at InfoVis, VAST, Vis (later SciVis), EuroVis, Paci-
ficVis, IEEE TVCG, CGF, and CG&A [91] used in their survey of VA
techniques for ML. Second, we applied a keyword search to retrieve
papers between 2020-2022 from the same venues. Our keyword se-
lection was expansive and included visualization-specific terms such
as visualization, visual analytics, human-in-the-loop, exploratory data
analysis, techniques, tools, and ML keywords, including artificial intel-
ligence, machine learning, neural network, deep learning, intelligent
system, and intelligent agents. This resulted in an additional 155 papers,
totaling 414 papers.

The first author reviewed all papers initially by reading the abstract
and main contributions. Both authors then discussed and defined the in-
clusion and exclusion criteria. Given the exponential growth of research
in this space and our objective for rigorous analysis, we conservatively
focused on papers emphasizing the role of human expertise and tasks in
VIS4ML design. To be included in our sample, we required that (1) the
paper contribute at least one interactive visualization for the purpose
of facilitating human analysis of ML, (2) the paper clearly articulated
VIS4ML tasks (i.e., how the visualization tool can effect change to ML
components through a HITL approach), (3) the paper specified one or
more design goals for the proposed visualization system rationalizing
the type of human tasks or activities in the ML pipeline, and (4) the
paper included some form of evaluation.

Consequently, this eliminated a large number of papers that (1) did
not state any clear design hypotheses, (2) focused on downstream usage
and understanding of trust and fairness, or (3) presented tools designed
to stimulate reflection on visualization techniques that could be applied
in a machine learning pipeline, but which could also be used for other
purposes (e.g., [69]). After filtering, we had 76 papers in our set. Of
these, we sampled 52 papers. Hence, our analysis is not intended
to be comprehensive or produce a taxonomy. Instead, we sought to
conduct a relatively deep analysis of all of the papers in the sample
(see Section 3.3) toward assessing the generalizability gaps of VIS4ML
research contributions.

3.2 Codebook Development
Initially, both authors independently coded the same set of 5 papers
with the high-level goal of identifying 1) how researchers motivated
the incorporation of human knowledge in the ML pipeline and what
forms this knowledge took, 2) what knowledge outputs or “insights” the
system intended to help users reach, 3) what sorts of visualizations and
automated processes they relied on, and 4) how the design hypotheses
implied by the specific motivating claims were evaluated. In this initial
read of the papers, we incorporated top-down influences in the form
of codes adapted from prior taxonomies (section 2.1) and bottom-up
influences where we identified codes from our observations.

The authors then discussed the specific aspects of the papers that are
important to characterizing threats to the generalizability of VIS4ML
research contributions. Through this discussion, we developed our
codebook capturing aspirations about why the VIS4ML systems were
being built, what specific types and examples of insights the papers
provide to argue that human knowledge can be extended into the ML
pipeline through visualization interfaces, and what datasets and mod-
eling techniques were used in the examples. We also discussed how
different sections of the paper map to different codes in our codebook.
The codes span across the overall paper-level codes such as the pa-
per’s motivation and the nature of human expertise required to use
the VIS4ML system, and insight-level in which the expert inputs their
prior knowledge to glean specific insights about the ML components.
Our final codebook with descriptions is available in the supplementary
materials. Here we describe the main categories using examples from a
recent paper on CNNs [43].
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Using the codebook,  both authors engaged in 
deep reading and coding of distinct set of 25 
and 27 papers  (~ 2 -3 hours/paper)  followed
by weekly discussions to synthesize findings. 

CODING AND ANALYSIS

Fig. 1: Method for Paper Selection, Codebook Development, and Coding and Analysis.

At the paper level, we coded elements like the broader Motivating
Claims for VIS4ML (e.g., “[using the tool] experts can diagnose the
potential issues of a model and refine a CNN, which enables more rapid
iteration and faster convergence in model construction”), how authors
Identified Support Needs for VIS4ML (e.g., meeting regularly with six
deep learning experts over twelve months and including three as au-
thors), the Target Generalization Context for the system (including the
properties of the models or datasets it is intended to generalize to, e.g.,
"CNNs that can be formulated as a DAG with less than 100 classes"),
and the overall Evaluation Approach (e.g., ”visual data analysis and
reasoning case study”, adapted from an existing taxonomy for visual-
ization evaluation [30]), as well as the specific Evaluation Metrics for
tracking whether a system was useful (e.g., “expert insights”).

We used the insight level as a more specific unit of analysis to
differentiate different types of insights described as supported by the
system. We coded Forms of Human Generated Insights based on
descriptions of knowledge gained about the modeling pipeline (e.g.,
“[expert] identified that neurons in the lower layers learned to detect low-
level features such as corners. . . ” [43]). Given the prevalence of claims
that integrating human knowledge via VIS4ML leads to improved ML
use, we coded any Actions Taken that authors described resulting from
system use. These could be concrete operations applied to the modeling
pipeline (e.g., the expert added a batch normalization network then
retrained, lowering model error by 9%) to more broadly construed
future actions (e.g., the expert suggested they would use the system in
their future model development process).

We coded dependencies for each insight, including the Human
Knowledge Required to reach that insight (e.g., existing domain-specific
or domain-general knowledge), the forms of Feedback via Model Sig-
nals and Dimensionality Reduction and Other Approximations such as
preprocessing steps or other use of algorithms to transform the data
on which the visualizations or interactions depend. We also coded the
specific Dataset and Model associated with the insight (e.g., CIFAR-10
with a 10+2 layer CNN with cross-entropy loss and ReLu [68]).

3.3 Coding and Analysis Procedure
Both authors independently coded a distinct set of 27 and 25 papers (in-
cluding re-coding the initial five papers). Each paper took between 2−3
hours to code in which the authors engaged in a deep reading of the
paper to extract and map the individual information onto the codebook
in separate Google Spreadsheets. This included tracing each example
insight presented in the paper, identifying the human knowledge that
went into generating the insight, specific configurations, and encod-
ings of the visualization, and interaction parameters. Throughout the
coding process, the authors also made notes about salient observations
about VIS4ML contributions. After coding all the papers, the authors

collaboratively analyzed the coded data within each category of codes.
This included weekly hour-long discussions and using digital affinity
diagramming on Microsoft Whiteboard to cluster the data within each
column. The authors also participated in two 3-hour long co-located
discussion sessions to synthesize findings about gaps in generalizability
and brainstormed recommendations for addressing them.

Naturally, our analysis is influenced by our research backgrounds.
Both researchers have extensive experience in visualization research,
which between them includes prior work covering aspects of collabora-
tive design and development of human-centered AI, evaluation practices
in visualization (including ML), research transparency, and statistical
decision theory. Neither author identifies as an ML researcher.

4 FINDINGS

We organize our findings based on how the 52 papers in our sample char-
acterize humans involved in VIS4ML, the scope of the ML components
and pipelines, the intended HITL tasks supported with VIS4ML, and
the approach to implementing VIS4ML tools given existing workflows
and evaluation of the overall system and critical abstractions.

4.1 Characterizing Humans in VIS4ML
Ideally, to innovate VIS4ML tools, researchers should determine the
specific nature of human expertise, prior knowledge, and skills repre-
sentative of real-world workflows. While a majority of papers (76.9%)
directly engaged with experts – individuals who have the necessary
expertise to intervene in the ML modeling process – to identify re-
quirements for VIS4ML, many lacked rationale for why and how those
experts were sampled and the nature of their expertise in supporting
HITL tasks.

To involve stakeholders, researchers employed various need-finding
methods, including interviews (10; 19.2%), regular meetings with ex-
perts (14;26.9%), iterative design and evaluation (11, 21.1%), and
participatory design (3; 5.7%). Across these approaches, participants
comprised ML experts [MLE] (26; 50% ), domain experts [DoE] (5;
9.6%), or data analysts [DAE] (2; 3.8%). Further, only five papers
(9.6%) included both ML and domain experts as study participants.
Considering that many of the VIS4ML systems require prior knowl-
edge or expertise spanning across ML and specific domains such as
health, multi-stakeholder involvement is not prevalent. The number of
participants in formative studies ranged from 2 - 20, and in 3 papers,
the authors themselves were expert participants. While papers often
implied that engaging with experts was critical to ensure the validity
of their work, very few systematically reported details about the study
protocol, including descriptions of specific expertise or expert knowl-
edge, recruitment and study design, or the nature of design probes and
feedback, so as to enable reproducing the methods.



Experts Prior Knowledge HITL Task Action ML Evaluation
# System MLE DoE DAE Dt Do ML C SR Dg T Tr I E FE MS MD D O H Model Data VDAR UP AP UE C-QRI I-QRI CTV
1 DataDebugger [88] ∎ ∎ ∎ ∎ ∎ MNIST ∎ ∎ ∎

2 AdViCE [22] ∎ ∎ ∎ ∎ SVM HELOC* ∎

3 iForest [93] ∎ ∎ ∎ RF Titanic, GC ∎ ∎ ∎

4 INFUSE [37] ∎ ∎ ∎ ∎ LR,DT,kNN Diabetes ∎

5 ActiVis [34] ∎ ∎ ∎ ∎ ∎ CNN TREC ∎ ∎

6 REMAP [7] ∎ ∎ ∎ ∎ ∎ ∎ ∎ DNN CIFAR-10 ∎ ∎

7 RetainVis [38] ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ RNN HIRA-NPS ∎ ∎ ∎ ∎

8 RuleMatrix [50] ∎ ∎ ∎ NN PIMA ∎ ∎ ∎ ∎

9 DeepVID [79] ∎ ∎ CNN MNIST ∎ ∎ ∎

10 BaobabView [76] ∎ ∎ ∎ ∎ DT Oncology ∎

11 Perturber [66] ∎ ∎ ∎ CNN ImageNet ∎ ∎

12 VisLRPDesigner [28] ∎ CNN ImageNet ∎ ∎

13 TopoAct [61] ∎ DNN ImageNet ∎ ∎ ∎ ∎

14 Visevol [8] ∎ ∎ ∎ ∎ ∎ Bio* ∎ ∎ ∎

15 Boxer [21] ∎ ∎ ∎ IMDB ∎

16 DeepEyes [60] ∎ ∎ ∎ CNN MNIST ∎ ∎

17 Blocks [3] ∎ ∎ ∎ CNN ImageNet ∎ ∎

18 DQNViz [78] ∎ ∎ ∎ ∎ ∎ DQN ∎ ∎

19 ConceptExplainer [27] ∎ CNN ImageNet ∎ ∎

20 SliceTeller [92] ∎ ∎ ∎ ∎ ∎ ∎ ∎ DNN ∎ ∎

21 NAS-Navigator [74] ∎ ∎ ∎ CNN CIFAR-10* ∎ ∎ ∎

22 FSLDiagnotor [89] ∎ ∎ ∎ CNN ImageNet ∎ ∎ ∎

23 FeatureEnVi [9] ∎ ∎ ∎ ∎ ∎ XGBoost UCI ∎ ∎

24 GNNLens [33] ∎ ∎ ∎ GNN Cora-ML ∎ ∎

25 HetVis [82] ∎ ∎ ∎ ∎ ∎ CNN Face Mask ∎ ∎

26 DECE [13] ∎ ∎ ∎ ∎ ∎ ∎ NN Pima, GC ∎ ∎ ∎

27 NeuroCartography [59] ∎ CNN ImageNet ∎ ∎ ∎

28 What-If [85] ∎ ∎ ∎ LR UCI ∎ ∎ ∎

29 Errudite [87] ∎ ∎ ∎ BiDAF SQuAD ∎ ∎ ∎

30 HardVis [10] ∎ ∎ ∎ ∎ ∎ kNN Cancer* ∎ ∎ ∎

31 VATUN [58] ∎ ∎ ∎ ∎ ∎ CNN CIFAR-10 ∎ ∎ ∎

32 CNN Explainer [83] ∎ ∎ ∎ CNN CIFAR-10 ∎ ∎ ∎

33 LSTM Vis [73] ∎ ∎ ∎ ∎ ∎ ∎ LSTM Synthetic ∎ ∎

34 SEQ2SEQ-VIS [72] ∎ ∎ ∎ ∎ ∎ German-Eng IWSLT’14 ∎

35 SUMMIT [25] ∎ ∎ ∎ CNN ImageNet ∎ ∎

36 Confusion Wheel [2] ∎ ∎ UCI,MNIST ∎ ∎ ∎

37 TensorFlow Graph [86] ∎ ∎ ∎ ∎ CNN CIFAR-10* ∎ ∎

38 Semantic Navigator [32] ∎ ∎ ∎ ∎ DNN ∎ ∎ ∎ ∎

39 CNNVis [43] ∎ ∎ ∎ ∎ CNN CIFAR-10 ∎ ∎

40 VA Workspace [17] ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎

41 DGMTracker [42] ∎ ∎ ∎ ∎ GAN CIFAR-10 ∎ ∎

42 AEVis [41] ∎ ∎ ∎ ∎ CNN ImageNet ∎ ∎

43 RNNVis [49] ∎ ∎ ∎ RNN Yelp ∎ ∎ ∎

44 TNNVis [56] ∎ ∎ ∎ ∎ ∎ PoS ∎ ∎

45 SCS [16] ∎ ∎ Topic Model ∎ ∎ ∎

46 BOOSTVis [44] ∎ ∎ ∎ ∎ GBDT ∎ ∎

47 SCANViz [80] ∎ ∎ ∎ ∎ SCANViz* ∎ ∎

48 DRLIVE [81] ∎ ∎ ∎ ∎ DRL Atari ∎ ∎ ∎

49 ProtoSteer [51] ∎ ∎ ∎ ∎ ∎ ∎ ∎ ProSeNet Yelp ∎ ∎

50 GAN Lab [35] ∎ ∎ ∎ GAN ∎ ∎

51 Beames [14] ∎ ∎ LR Housing ∎

52 DRLViz [31] ∎ ∎ ∎ ∎ DRL ∎ ∎

Table 1: List of VIS4ML papers and key paper-level columns considered in our analysis. Expert engagement includes Machine Learning
Experts (MLE), Domain Experts (DoE), and Data Analysts (DAE). Assumed expert prior knowledge includes: Domain Knowledge (Do), Data
Knowledge (Dt), Machine Learning Knowledge (ML), Tacit Knowledge (T), Scientific Reasoning ability (SR), Choice Assessment (C), and
Diagnostics skills (Dg). The human-in-the-loop tasks are Interpreting and Assessing models (I), Model Selection/Choice (MS), Debug and Fix
Errors (E), Model Design (MD), Model training (Tr), Feature Engineering (FE), and Examining/Preparing Data (D). Insight-informed actions
include Observed Actions (O) and Hypothetical Actions (H). Evaluation taxonomy is based on [30]

.

4.1.1 Assumptions about Prior Knowledge and Skills
Almost all papers lacked explicit descriptions of prior knowledge and
skills required of human experts to inform VIS4ML designs. How-
ever, authors’ descriptions of design goals based on formative studies

surfaced implicit assumptions and prerequisites about the expertise
and skills required to be in the loop. Of the 52 papers, 11 (21.1%)
mention the need for machine learning knowledge [ML], including
the conceptual understanding of specific models and modeling tech-
niques, practical (hands-on) experience with training models, and the



ability to comprehend model statistics and performance. For exam-
ple, LSTM Vis [73] assumes that “architects are deeply knowledgeable
about machine learning, neural networks, and the internal structure
of the system” Further, 14 papers (26.9%) emphasize data knowledge
[Dt] or expertise required to use VIS4ML systems. Data knowledge
includes familiarity with specific datasets, contextual understanding of
data and sub-groups, ground truth labels, and the ability to judge the
relative importance of data instances and classes. HardVis [10] assumes
that users are “competent in judging the influence of a suggestion on
the whole data set” when exploring automated sampling suggestions.

In 8 papers (15.3%), authors indicated the need for domain knowl-
edge [Do], including domain-general knowledge (e.g., how language
works), the ability to contextualize and comprehend model decisions,
the ability to recognize good and bad model behavior, and the abil-
ity to notice errors and foresee domain consequences of bad model
behavior. In describing the task of analyzing feature transformation,
FeatureEnVi [9] requires that “A user should be competent in judging
the influence of feature transformations before applying them.” Lastly, 4
papers (7.7%) based their design choices on experiential or tacit knowl-
edge [T] about modeling pipelines, including prior knowledge about
performant network architecture, known constraints to search the archi-
tecture space, past experience revising the space of hyper-parameters,
and knowledge about critical data examples to assess model behavior.

Papers also made assumptions about the specific skill sets required
to interact with VIS4ML systems. From our analysis, we identified
three types of skill sets that are a combination of domain, data, and ML
knowledge. Ten papers (19.2%) assume that users are able to perform
diagnostic analysis [Dg] of the modeling pipeline, including running
ablation studies, analyzing model behavior using adversarial examples,
and root cause identification through exploration and inspection. Nine
papers (17.3%) require that users are able to engage in scientific rea-
soning [SR] through hypothesis generation and testing, counterfactual
analysis, and case-based reasoning. Finally, the design paradigms for
four papers (7%) are based on choice architecture, i.e., the ability to as-
sess choices [C] and make modeling decisions (e.g., comparing models,
selecting from a list of automated recommendations, etc.).

4.2 Scope of ML Components and Modeling Pipeline
Based on need-finding studies with experts, papers defined concrete task
requirements (36; 69.2%), identified design challenges (7; 13.4%), and
derived design goals (20; 38.4%) for VIS4ML systems. By analyzing
these requirements across papers, we identified researchers’ aspirations
about the scope of VIS4ML contributions within the modeling pipeline.
Papers aspired to address critical challenges of scale, generalizability,
high dimensionality, perceptibility, and varied data types in the
ML pipeline. For instance, ConceptExplainer [27] aims to support
multi-scale concept visualization (e.g., ImageNet dataset with 1.2 M
images for 1000 classes), REMAP [7] aims to lower time and resource
cost of finding performant model architectures, and ActiVis [34] seeks
to solve model exploration for multiple types of data. Other systems
aim to help analysts perceive and discover salient patterns and insights
in high-dimensional data and complex model architectures (e.g., [25]).

4.2.1 Datasets and Model Types in VIS4ML Implementation
All but two papers in our sample report on specific data and models
used to construct examples in the paper or run an evaluation. Most
papers relied on established benchmark datasets to demonstrate tools,
including but not limited to ImageNet (9; 17%), CIFAR-10 (7; 13%),
MNIST (6; 11.5%), Yelp restaurant reviews (3; 6%), and other exam-
ples from the UCI ML repository (6; 11.5%). Several demonstrated the
tool using synthetic data (3; 6%). We observed some disparity in how
papers valued using simple examples and well-known datasets. Many
implied that using well-known datasets or benchmarks made their work
stronger, but some papers commented on the need for tools to support
and be evaluated on data that experts care about, for example, because
using popular data like MNIST for better verification led to little in-
sight about diagnosis and model refinement due to its simplicity [43].
Others constructed systems, for example, for pedagogical purposes,

that were acknowledged to be unrealistic (e.g., simple 2D data) to avoid
dependencies on approximations like dimensionality reduction [35] in
surfacing the results for users.

In terms of target model types, many systems are designed for con-
volutional neural nets (CNNs: 20; 38.5%). Others focused on recurrent
neural nets (RNNs: 8; 15.4%), generic deep neural networks (DNNs: 3,
5.8%), decision tree-based approaches (7, 13.5%), k-nearest-neighbors
(3; 5.8%), GANs and deep reinforcement learning (2 each), and zero-
shot models, graph neural networks, and deep Q networks (1 each).
Many systems were framed as intended for large models or datasets;
however, scalability in terms of classes or concepts was often a stated
limitation. Scalability constraints were described in terms of numbers
of classes (e.g., up to 20, 100, 1000, etc.), concepts (up to 40, 100),
features, instances, feature maps, and nodes in a max-pooling layer,
as well as dimensionality (of both datasets and hidden states). Some
systems were described as intended for small models (e.g., [7, 83]).
Others were highly specific (e.g., GANs that can run in a browser with
2D data samples [35]). Papers also occasionally described expected per-
formance under other properties of inputs or outputs, like imbalanced
data [2] or non-orthogonal concepts [80].

The papers often commented on the scalability of their contributions
to broader classes or data conditions. A few systems were described as
directly applicable to varying architectures (e.g., [80]), data modalities
like images or text (e.g., [11]), model types (e.g., [2, 61]), and encoder
types [72]). However, other times papers made generalizability claims
implying that the general combination of representations or interactivity
would be adaptable to other cases given further engineering.

4.3 Human-in-the-loop Tasks
All papers motivated the need for incorporating human knowledge in
the modeling pipeline. By coding the descriptions in the introduction
section, we identified seven categories of human-ML interchange in
the modeling pipeline. While several papers ascribe human roles in
multiple stages of the pipeline, 25 papers (48.1%) specifically empha-
size human involvement to interpret and assess [I] model behavior.
Further, 15 papers (28.8%) motivate humans’ role in debugging and
fixing model errors [E]. In targeting the earlier stages of the modeling
pipeline, two papers (3.8%) mention human inputs in examining and
preparing data [D], three papers (5.8%) focus on feature engineering
[FE], five papers (9.6%) highlight the need for human expertise in
choosing the right modeling techniques [MS], two (3.8%) on model
design and configuration [MD], and three (5.8%) motivate humans’
role in monitoring and managing the model training [Tr] process.

In identifying these human roles, a majority of papers present moti-
vating claims that fall under one of five categories, including (1) current
limitations of machine learning use in real-world, (2) requirements for
machine learning applications to succeed, (3) modeling complexity,
(4) limitations of current approaches for HITL, and (5) lack of support
for incorporating human knowledge in the modeling pipeline. Domain
criticality of ML models and the need for trust (e.g., “knowing how
entire classes are represented inside of a model is important for trust-
ing a model’s predictions. . . ” [25]), human effort and experience (e.g.,

“. . . can’t blindly trust automated methods (e.g., in a medical setting, doc-
tors will want explanations of predictions),” [13]), and scalability are
prominent themes across motivation claims, though formal definitions
of these goals are not given.

While the majority of reported VIS4ML task requirements are con-
crete, such as making comparisons between classes or models, in a few
cases, tasks are defined only in the abstract and lack clear descriptions
of scope or task resolution (e.g., ‘exploring’ details or ‘understand-
ing’ model behavior). Further, while many papers ground their design
goals in measures of model performance, effort, effectiveness, scale,
and heterogeneity of modeling characteristics, their definitions of these
measures and whether or how the properties emerged from need-finding
studies or were chosen a priori are not always clearly specified.

To understand ways in which VIS4ML systems support the HITL
tasks described above, we coded insight examples provided in usage
scenarios or case studies and actions they purportedly inspire.



4.3.1 Forms of Human Generated Insights
We identified six categories of insights across visualizations of training
data, fitted models, and model representations and configuration. Given
that interpretability is a central topic (nearly half of the papers in our
sample), VIS4ML systems are meant to support insight generation
about inference mechanisms (i.e., what the model learns and how it
makes inferences). Examples and descriptions suggested analysts could
generate causal hypotheses about the influence of structure and features
on prediction results, how different models learn features, mapping
between layers, classes, and concepts, what the model has learned from
data, agent strategies in reinforcement learning, and how data attributes
such as pixels in images contribute to classification. For instance, at the
data level, in [28], the analyst attempts to learn through pixel-flipping
(setting selected pixel values to zero) the relevance of water surface
pixels contributing to the ‘boat house’ class. Or, by observing cross-
class links of concepts for different vehicle classes (e.g., car windows),
the analyst might conclude that the neural network has learned common
features across different cars [27].

Further, through exploratory analysis, analysts might gather evi-
dence of erroneous behavior and root causes of errors (i.e., finding
and fixing errors). VIS4ML solutions were aimed at surfacing incon-
sistencies in model decisions, clusters with low accuracy, evidence of
concept incoherent topics, lack of clear class separation, edge cases
and hard-to-distinguish classes, model vulnerabilities to adversarial
perturbations, etc. As an example, in the scatterplot visualization in
DataDebugger [88], the analyst sees that the classes ‘knitwear’ and
‘sweater’ were heavily mixed. In DeepEyes [60], the analyst sees that
activation of a “digit-5” associated filter also showed strong activation
on digit-3, indicating perfect class separation is impossible in that layer.
Visualizations also help in debugging and identifying root causes of
errors, including denigrated or oversized filters, limitations with neuron
cluster composition, concept entanglement, problematic layers in the
network, sub-optimal agent strategies, and errors originating in dif-
ferent model components. For example, in DQNViz [78], the analyst
is said to observe that the agent moving the paddle left and right (a
strategy in the Breakout game) comprised 31% and 47% of 25,000
steps in the epoch but did not contribute to achieving rewards.

In addition to debugging model and data errors, VIS4ML systems
aim to support validation or assertions of intended model behavior.
Across our set of papers, analysts were described as being able to
evaluate hypotheses about known characteristics of good training (e.g.,
important classifiers centered at the beginning) and similarities between
neural networks and human decision rationales and confirm consistency
in the model’s decision-making. For instance, in SUMMIT [25], the
analyst verifies that, similar to humans, the model classifies black bear
and brown bear based on color. Further, VIS4ML systems aim to
help analysts understand the space of data and modeling choices for
subsequent decisions and actions. Concretely, analysts are thought
to gain insights into the strengths and limitations of different feature
selection algorithms, feature importance and which features to exclude,
comparative differences between models, architecture choices such as
which layer to remove in a neural network, which models to include in
an ensemble, and how to slice datasets.

In the process of deducing these different insights, analysts also
need to make inferences about model performance. To facilitate this
understanding, VA tools present information about the model depth
and classification accuracy, model accuracy for different classes, which
model performs best, data slices and performance, data quality and
ground truth impact on performance, model convergence time, memory,
and compute time during training, etc.

4.3.2 Model Signals for Insights
To support users’ inference processes, designers of VIS4ML systems
must identify what forms of feedback on model quality, interpretability,
or performance to surface. Most papers surfaced some form of metric
to provide feedback. Of the 52 papers, 23 (44%) provided information
about model performance using confusion matrices, plain text, or line
charts showing loss and accuracy curves. In addition, 7 papers (13.4%)
provided information about class probabilities using text or color-coded

bar charts. Lastly, 11 papers (21.1%) provided feedback about modeling
tasks such as training time, number of parameters, number of data items
corrected through active learning, delta-changes or improvement to
model performance, and feature importance. The level of motivation
for the specific model signals that papers used varied considerably, with
many papers providing a very brief motivation and a few providing more
rigorous motivation of why the chosen signals were good estimators
for improving model performance.

4.3.3 Insight-informed Actions
Given the prevalence of claims that integrating human knowledge via
VIS4ML leads to improved ML use, we wanted to see what sorts of
actions—from concrete operations applied to the modeling pipeline
to more broadly construed future actions—papers described resulting
from the insight gains of a system. For each human-generated insight,
we coded any actions described as taken based on that insight.

We noted whether the described actions occurred in the context of
author-provided examples, such as fictional case studies or running
examples used throughout the paper, or expert case studies. We also
noted whether the actions were observed [O] (e.g., actually applied to
a modeling pipeline), such as when papers described actions an expert
took based on using the tool or presented results from re-training a
model after implementing a change, versus actions that were hypo-
thetical [H], i.e., that could be taken or were referred to as possible
future steps. Finally, we noted whether specific before and after perfor-
mance comparisons were made (e.g., accuracy comparisons) to validate
the utility of observed actions in the larger ML pipeline or research
endeavor.

Observed actions: Overall, the majority of papers (42; 82.7%) de-
scribed some action as the result of an insight gained from the VIS4ML
system. Of these, 27 (about half of the total 52 papers) described at
least one observed action. About a third of the total papers (15 of 52)
described at least one action taken by an expert. The remainder (23.1%
of 52) were actions by the authors as part of the case studies they de-
signed. Examples of actions that authors or system users took based
on insights include changes to the training data, such as sampling to
deal with class imbalances or modifying training labels; changes to
the features, like switching input images to grayscale [3]; changes to a
model representation, like adding or removing rules from rule-based
classifiers [2] or moving neurons between clusters [43]; changes to
model parameters, like reducing the number of latent dimensions [80];
changes to the model architecture, like adjusting layers or filters of
deep NNs [7,60]; and changes to the training process, like changing the
learning rate [35] or variance sampler [42] of deep generative models.

Slightly more than one third of the total papers (19 of 52) described
or quantified the effect of an action on the modeling pipeline. Most
cited numeric changes in model accuracy or error. Several papers
presented accuracy, precision, and recall statistics (e.g., [9]) to acknowl-
edge trade-offs or changes in training speed (e.g., [60]). A few other
papers reported on trade-offs between accuracy and interpretability,
such as how accuracy remained similar after human-driven adjustments
while the number of nodes in the latent representation significantly
reduced [76]. Hence, over 60% of the papers in our sample provided
no concrete evidence of the impacts of the VIS4ML system on the ML
pipeline.

Hypothetical actions: Of the 25 papers where no concrete action
was observed, 15 (28.5%) described a hypothetical action. Six papers
(11.5%) referred to hypothetical actions proposed by an expert in a case
study; the remainder were proposed by authors as part of examples
they developed. Hypothetical actions could be well defined, such as
when papers mentioned specific actions on a pipeline that could be
taken upon reaching some specific insight, e.g., reparameterizing a
deep RL system after observing that a lower dimensional representation
appears to have explanatory power [81]. Other hypothetical actions on
a pipeline were referred to in less specific terms, such as informing data
collection or experiment design [3, 51, 73], allowing fine-tuning of a
model [2, 81, 85], or supporting bug finding [85].

Other hypothetical actions concerned changes to experts’ processes,
such as when experts said that they would incorporate the system in their



future model development processes [43], or their insights were thought
to inform subsequent analysis or theoretical investigations [49, 73, 78],
or future research or other "endeavors" to improve such models [13,33].

Of the 10 papers where neither observed nor hypothetical actions
were described, one described a system developed for educating non-
experts [83], noting that they chose this goal because supporting an
interactive training process would be unrealistic. Other papers in this
group focused on interpretation goals without necessarily providing
reasons why actions were not considered.

4.4 VIS4ML Implementation and Evaluation
Based on need-finding studies, papers identified implementation
desiderata for supporting human understanding, design, and improve-
ment of the model. Specifically, the papers aimed for their systems
to align with existing modeling practices and workflows. Through
their interactions with experts, authors either captured existing task
workflows or defined new workflows for VA tasks. For instance, Fea-
tureEnVi [9] defines a unified workflow for feature engineering by
“fusing stepwise selection and semi-automatic extraction approaches.”
A few papers emphasized human-knowledge integration and guided
discovery of model and data characteristics. In rationalizing system
design considerations, authors made connections to human knowledge
and comprehension support needs. For instance, in designing NAS-
Navigator [75], authors intended that users be able to design and edit
template models based on their experience. Additionally, some au-
thors hoped to support varied work environments and overcome ML
deployment challenges.

Prior taxonomies broadly describe the specific visualizations and
interaction formats we observed across papers. Hence we focus on
papers’ reliance on abstraction techniques for model interpretability
and approaches to VIS4ML evaluation.

4.4.1 Post-Hoc Interpretability Methods
We observed frequent use of dynamic algorithms and approximating
representations in the visualizations employed in VIS4ML tools. Many
papers used dimensionality reduction techniques (e.g., PCA, UMAP,
MDS; 12 papers; 23.1%) and/or projection-based visualization tech-
niques like t-SNE (16; 30.8%) to visualize high dimensional data in
2D. While t-SNE generated layouts are guaranteed to recover struc-
ture in high dimensional data under certain conditions [4], without
proper tuning, they can produce artifacts that mislead users to perceive
structure that doesn’t exist [84]. Two papers seemed to acknowledge
such limitations, noting that they had intentionally opted not to use
projections like t-SNE, for example, because the authors “found that
if the tool loses its inherent connection to the data, results were less
interpretable to the user” [73].

Similarly, the machine learning interpretability literature has con-
tributed a number of post-hoc explanation methods designed to provide
intuition into how a model reaches a decision or what it has learned. The
VIS4ML systems we surveyed made frequent use of feature attribution
approaches such as feature visualization through partial dependency
plots and other graphics in feature space (13; 25%) or deriving of
importance scores for ranking or recommendation (7; 13.5%).

Pixel-based saliency maps and other forms of activation heatmaps
were also used (5; 9.6%). In a few cases, papers referred to limitations
of these approaches, such as by discussing how maps of salient image
patches activating a neuron were not appropriate for explaining the
activity in neurons of very deep CNNs, where activations are influenced
by very large patches [41].

For VIS4ML tools to be implemented in practice requires trans-
parency on how hyperparameters used in critical approximating repre-
sentations are set, including any tuning processes used. Papers varied
considerably in the extent to which they specified such information for
dynamic visualization algorithms like t-SNE, clustering approaches,
or other optimizations. Interactive hyperparameter tuning, such as the
ability to set a target k for clustering algorithms, was occasionally made
available to end users as a strategy to avoid dependence on authors’
decisions. In cases where it was not but a parameterized technique
was used, some authors described only the values they set, while oth-
ers described the values and the tuning process they used, and others

provided suggestions for how those adapting the system should use or
not use the specific values or process they used. Occasionally papers
did not commit to any single technique, instead mentioning various
projection methods that could be used (e.g., [72]).

4.4.2 VIS4ML Evaluation
To understand VIS4ML evaluation as a subset of visualization evalua-
tion more broadly, we used Isenberg et al.’s [30] adaption of Lam et al.’s
taxonomy [39] to characterize forms of visualization evaluation and
the metrics or outcome variables associated with them. We observed
instances of all evaluation styles except Evaluating Collaborative Data
Analysis. We report on formative studies aimed at Understanding Work
Practices described above.

Most notably, every paper in our sample exemplified validation
through Visual Data Analysis and Reasoning [VDAR]. VDAR cap-
tures case-study style evaluations of how a visualization tool supports
analysis and reasoning about data and allows domain experts to derive
knowledge. Case studies could be based on collaboration or observation
of expert users or describe hypothetical users’ analysis processes (Sec-
tion 4.3.3). Sometimes experts were paired with authors in case studies,
though similar to Sperlle et al.’s [70] observation of missing details in
evaluation, it was not always clear whether authors were involved. In
reporting these scenarios, however, papers narrated VDAR processes
by describing how observations at various points could be interpreted
as evidence of certain facts about the data, model, or pipeline.

The implied evaluation metric of a VDAR-style evaluation is the
validity of the insights that are generated. As discussed above, only
about one-third of the papers provided evidence of improved model
performance as a result of insight-informed actions. Hence, most
of these evaluations inherit the ambiguity of what makes an insight
meaningful or important, which is frequently discussed in visualization
research [57, 90]. In a couple of papers, authors performed robustness
testing to establish the validity of insights, such as testing to verify that
a user’s insights generalize beyond the specific input data and/or model
architecture used [66] or using PCA to validate structures identified
using a contributed topological summary approach for exploring DNN
activations [61].

More commonly, however, expert judgment was implied to establish
that insights were useful. Authors often signaled why a process was
meaningful by interspersing quotes from the experts’ thinking aloud
as they used the tool. For example, some papers included quotes from
experts describing how they were able to use a system to confirm
prior knowledge, such as confirming evidence of under- or overfitting
in comparing CNN models that varied in complexity [43]. In other
cases, quotes summarized how the insights or actions they were able to
achieve with the system represented solutions to problems they often
face (e.g., [43]). Others described how insights stimulated further
consideration on the part of users.

A few papers implied that an insight gained from a VDAR process
was valid because it corroborated an observation or a hunch identified in
prior work. For example, papers describe how an observation “confirms
earlier work that demonstrates simple context-free models in RNNs
and LSTMs” [72, 73] or how the absence of positive values in a DNN’s
training process was “observed, but not explained” by prior work [42].

VDAR evaluations were commonly paired with subjective feedback
and opinions from users (User Experience [UE]; 65.4% of total papers).
Many papers used think-aloud protocol and/or semi-structured inter-
views to gather qualitative feedback from VDAR participants. Others
elicited Likert-style responses on the usefulness and usability of a tool.
Less commonly, surveys were used to elicit experts’ self-assessments
of their findings (e.g., [87]). This was rare, however; in most cases,
it was implicit that because an expert made an observation, they must
have faith in that observation. User Experience observations were most
frequently used to establish that experts found the system useful and to
describe potential improvements.

Sixteen papers (30.8%) included what prior surveys of visualization
evaluations have called isolated Qualitative Results Inspection [I-
QRI], referring to validation of techniques by inspecting a technique’s
results in isolation, along with a description of how the technique



achieves some result. All isolated QRI examples we observed were
used to validate the visualization techniques used. For example, papers
might point to how a certain pattern exemplified in a visualization
was indicative of some fact about the latent representation, training
process, or other parts of the pipeline: “it is evident in Fig. 3b that the
digits 1, 2 and 7 are often confused with each other, as their shapes are
similar to some degree [2]. On the other hand, five papers (9.6%) used
comparative (QRI) [C-QRI] to compare visual outputs to other state-
of-the-art techniques to suggest that an adopted approach is superior
(e.g., “Without Fourier basis parametrization, the differences between
the models are more visually distinct” [66]).

Beyond qualitative evaluations of user experience, we observed
a smaller number of papers (8; 15.4%) using a User Performance
[UP] style evaluation, where the performance of users with the system
(or independently with the visualizations) was recorded to isolate the
effects of specific features. For example, [88] used logged data as part
of an expert case study to compare improvements in label accuracy
after iterations of an algorithm. Other studies recorded task completion
time and/or accuracy on predetermined tasks given to users to evaluate
effectiveness [50, 93], or scored (via expert ratings, or automatically)
the results of an analysis session [16,17]. A few papers [72,85] reported
usage statistics such as page views from open-source releases.

Ten papers (19.2%) described Algorithm Performance [AP] evalu-
ations, consisting of quantitative studies of the performance or quality
of visualization algorithms or algorithms on which the visualized infor-
mation depends. A few focused on improving ML model understanding
among novices [35, 83], using an Evaluating Communication Through
Visualization (CTV) approach focused on how successfully novice end
users grasped important concepts as communicated by the tool.

5 DISCUSSION

Our findings characterize the current scope of VIS4ML research within
the broader requirements of human-in-the-loop in ML production.
Many of the papers we reviewed make bespoke visualization contribu-
tions demonstrated by specific use cases and evaluate them by taking
study participants’ insights taken at face value. This is not necessarily
problematic if the goals of VIS4ML research are exploratory, driven
by the purpose of identifying new engineering solutions for surfacing
certain information in ML pipelines and reporting lessons learned in
the process. This kind of design study methodology has become an es-
tablished mode for visualization research [47]. However, we observed
that papers often used their case studies to draw general conclusions
about the utility of certain representations or interaction designs for
improving the performance of the model or pipeline, such as by making
claims about how a system demonstrates the value of integrating human
knowledge. This suggests an overlooked distinction between the nature
of a design study versus a controlled empirical comparison [47], and
between engineering artifacts and scientific knowledge [29]. Here we
discuss specific threats to the generalizability of VIS4ML research
grounded in our analysis and propose near-term and future-looking
recommendations for improving the alignment between claims made in
VIS4ML research and the procedures used to validate them.

5.1 Threats to Generalizability
Ambiguous characterization of human expertise: Similar to prior
work by Sperrle et al. [70], we also observe strong yet often implicit
knowledge assumptions of users of VIS4ML systems. At times, papers’
claims about the accessibility of a tool seemed to contradict the knowl-
edge needed to use the system confidently; e.g., one paper presented
a hypothetical scenario involving a domain expert who was “not con-
versant with complex modeling techniques,” using a tool that required
interpreting residuals and parameter weights. Describing required ex-
pertise and reporting sources of confusion and the amount of training
needed for experts to use the system successfully (as a few papers
did [2, 43, 44]) is vital for transparency around dependencies, and will
benefit practitioners who try to adopt the work.

Overfitting to specific use cases: The predominance of hypothetical
usage scenarios and case studies suggests that success is often inter-
preted as a paper’s ability to demonstrate a few (usually 1-3) instances

in which a VIS4ML system appears to provide value. A risk of this
form of validation is that researchers will inadvertently build tools
to confirm their a priori knowledge about some dataset or modeling
pipeline but which are overfit to those specific insights. We observed
papers often using common datasets that have been thoroughly ex-
plored in the ML community, and validating systems by showing that
previously identified patterns were also visible using the new system.
The problem is that being able to present at least one usage scenario in
which a tool is perceived as helpful is different from showing that, on
average, using that tool improves some aspect of the ML pipeline. The
former takes the form of an existence proof, whereas the latter requires
studying a greater number of cases relative to a baseline representing
what experts would do without a tool.

Constrained evaluation practices: Overfitting can also arise from
heavy reliance on a few experts as consultants in the design process,
especially when those same experts are consulted to evaluate a sys-
tem, as we observed in multiple papers. Based on our analysis, papers
consistently rely on certain forms of evaluative evidence—namely, a
few usage scenarios or case studies with small numbers of experts in
which the experts make what they perceive as discoveries or confirm
their prior expectations—to validate the work. While these practices
are not necessarily unreasonable for a burgeoning research area in
which researchers invest considerable effort in making tools to sup-
port ML practice they may not be intimately familiar with, failure to
acknowledge such “validation gaps” threatens the transparency and
generalizability of VIS4ML research.

Postulating broader utility from exploratory evidence: Helping
users draw causal inferences to improve a learning pipeline is a common
implicit goal in VIS4ML research. However, post-hoc visualizations,
even when interactive, are limited in their ability to validate many
types of causal hypotheses [54]. Sometimes papers acknowledged
these limitations, such as by calling observations “speculative” [61],
noting that it is difficult to provide specific reasoning about what led to a
model decision [72], and noting that whether an action could effectively
address a perceived problem requires further investigations [81] or
statistical evidence [31]. However, across the papers in our sample such
statements were sparse.

Only about one-third of papers reported performance statistics for
a usage scenario as evidence that a model had been improved through
human involvement. Others relied on experts’ statements that a tool
was useful through user experience questionnaires or interviews or sim-
ply the authors’ ability to construct a hypothetical use scenario. While
users may be able to confirm propositions about the specific model or
pipeline at hand with a VIS4ML tool (e.g., whether removing subsets
of data or changing certain hyperparameters affects model output for a
certain validation set), hypotheses about the general behaviors of an ap-
proach cannot be verified without testing under new conditions. These
include, for example, hypotheses that a given class of models learns
in a particular way or is subject to certain blindspots. A few papers
acknowledged the potential for overfitting when users’ explanations
couldn’t be tested on new data [2, 14]. One paper even reported how
some expert users of a tool disapproved of the idea of using post-hoc
rule extraction to interpret a model’s decisions based on potential over-
fitting and described conditions to avoid this, such as the collection of
new data [2]. However, such acknowledgments were rare.

If the goal is to investigate whether human knowledge can ever
be helpful and how it might be integrated, then papers’ motivations
should reflect this, for example, by posing questions rather than as-
sertions. However, many papers motivate the work by referring to
the demonstrated power of VIS4ML to overcome the shortcomings of
fully automated ML pipelines. For example, papers cite prior VIS4ML
work in describing how “As shown by many recent works. . . , interpret-
ing DNNs with visual analytics has achieved great success” [81], or
“These visualizations have achieved great success in understanding and
analyzing those deep learning models”, referring to visualizations to
facilitate developing CNNs, RNNs, GANs, and DQNs [33]. While not
necessarily false, such “success” is narrowly defined.



Underspecified effort to insights: How much difficulty researchers
faced in identifying "successful" use cases for a tool is likely to be
a useful signal of how reproducibly a tool can improve ML practice.
However, papers generally did not describe the selection of specific
forms of insights they reported in VDAR-style evaluations, leaving it
unclear how unique the scenarios they demonstrated might be. An ex-
ception to this is a paper that explicitly noted how the authors explored
a large space of possible VDAR processes that the system afforded
before deciding on the selected scenarios [73]. However, it remains
unclear whether such exploration was needed to identify successful
examples.

5.2 Recommendations for Action
Below we summarize near-term and forward-looking aims to address
the generalizability gaps listed above. Our recommendations are in-
formed by proposed solutions to larger problems of a lack of rigor
and robustness in social science research and may be applicable to
the broader area of visual analytics application design. However, our
suggestions should be taken as tentative, as it is beyond the scope of
our paper to rigorously evaluate these reform proposals as should be
expected if reforms are to be effective [15].

5.2.1 Documenting Constraints on Generalizability
Some of the gaps we highlight can be addressed simply by improv-
ing documentation practices about known dependencies in VIS4ML
research. Conventional reporting styles in VIS4ML research do not
adequately describe the constraints on generality: What dependencies
the success of the system may have on the specific configuration of
components, users, and other specifics of the setting that was studied.
Our results suggest extending prior reporting guidelines for VIS4ML
systems [43,70] to encourage reporting of hidden dependencies, includ-
ing (1) all datasets used in examples and evaluations, (2) all scalability
and memory-related constraints, (3) expectations about how much time
users will need to learn the system (and reporting of learning time for
expert case studies), and (4) observed sources of confusion and failures
among users. In addition, to help “close the loop” researchers should
(5) provide model, pipeline, and deployment summary stats before and
after changes inspired by using the system. For reproducibility, they
should (6) describe parameters and values applied in examples for any
parametrized pre-processing steps as well as how those values were
reached. Finally, given that VIS4ML claims are demonstrated through
specific examples and insights, it is important that the researcher (7)
report the nature of their own exploration and insight generation (i.e.,
time and effort in identifying example insights). Future work should
investigate documentation standards and reporting guidelines by taking
inspiration from other disciplines such as the social sciences [67].

5.2.2 Tightening Logical Derivation Chains
VIS4ML papers should also carefully consider and communicate the
deductive logic behind the choices that are made, from motivating the
research to defining the conditions of the study. Papers should avoid
loose derivation chains, to borrow a term applied by Paul Meehl to
underspecification in experimental research [46]: a lack of evidence of
rigorous deductions in moving from theoretical premises to predictions
or choices made regarding observed relations. The exploratory nature
of VIS4ML research may mean that achieving tight derivation chains
is not realistic for many projects. However, papers could be improved
by striving to document where choices were made more arbitrarily
(e.g., out of convenience) in deciding how to instantiate hypotheses
or aspirations in systems. Along these lines, future work might take
inspiration from the design study literature, such as in the design ac-
tivity framework [45], to develop similar methods specific to VIS4ML
decisions for helping designers reason about and identify best practices
in connecting design goals, methods, and outcomes. Future research
could extend visualization design and evaluation frameworks (e.g., the
nested model [53]) to emphasize human expertise and prior knowledge
captured in VIS4ML design hypotheses and representativeness of said
expertise in real-world practice.

5.2.3 Bridging from Design Studies to VIS4ML in Practice
Despite the strength of claims that we observed in the VIS4ML liter-
ature, the nature of many of the studies we analyzed appears closer
to a design study pattern, in which “researchers analyze a specific
real-world problem faced by domain experts, design a visualization
system that supports solving this problem, validate the design, and
reflect about lessons learned in order to refine visualization design
guidelines” [65]. Notions of rigor and validation look different in such
studies [47, 48, 53], and expecting replicability and generalizability of
VIS4ML research may be premature. While Meyer and Dykes sug-
gest that design researchers “aim to produce explicit and appropriately
scoped expressions of knowledge claims,” our analysis suggests that
properly scoping expressions of knowledge claims may require more
concrete guidance to achieve.

In the longer term, VIS4ML research could benefit from forging
stronger partnerships with adjacent ML and HCI communities. As
VIS4ML brings visualization research towards the center of data sci-
ence, ML, and human-centered AI, VIS4ML research should look
beyond ‘insightism’–the superficial reliance on apparent insights pro-
duced by use–into pragmatism (usefulness) and cognitivism (impacts on
individual and social cognition) to really put the human in the loop [12].
Bridging research to ML practice requires exploring ways to negoti-
ate responsibilities, building deeper research collaborations between
visualization and ML researchers (e.g., CARE-ful partnerships [1]),
defining boundary objects for knowledge transfer, and addressing the
cost and effort of replicating findings in VIS4ML research.

6 CONCLUSION

We contribute a focused analysis of 52 VIS4ML papers represent-
ing design hypotheses about how integrating human knowledge can
help “close the loop” in ML practice. We observe a general optimism
about the potential for human integration to transform ML practice
and research and heavy reliance on collaborations with experts who
such tools might help. However, these aspirations are not always ac-
companied by evaluations demonstrating success in these goals. Our
findings show gaps in the generalizability of VIS4ML research contri-
butions, indicating that we are only closing a narrow instantiation of
the human-in-the-loop model. We make recommendations for action
that include transparent reporting, tightening logical derivation chains
in VIS4ML research practices, and extending current design study ap-
proaches to ML practices by exploring partnerships with the broader
human-centered AI research community.

7 ACKNOWLEDGMENTS

We thank our reviewers for their helpful feedback. Hullman is sup-
ported by the NSF (IIS-2211939).

REFERENCES

[1] D. Akbaba, D. Lange, M. Correll, A. Lex, and M. Meyer. Troubling
collaboration: Matters of care for visualization design study. 2023. 9

[2] B. Alsallakh, A. Hanbury, H. Hauser, S. Miksch, and A. Rauber. Visual
methods for analyzing probabilistic classification data. IEEE transactions
on visualization and computer graphics, 20(12):1703–1712, 2014. 4, 5, 6,
8

[3] B. Alsallakh, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do convolutional
neural networks learn class hierarchy? IEEE transactions on visualization
and computer graphics, 24(1):152–162, 2017. 4, 6

[4] S. Arora, W. Hu, and P. K. Kothari. An analysis of the t-sne algorithm for
data visualization. In Conference On Learning Theory, pp. 1455–1462.
PMLR, 2018. 7

[5] N. Boukhelifa, A. Bezerianos, R. Chang, C. Collins, S. Drucker, A. En-
dert, J. Hullman, C. North, and M. Sedlmair. Challenges in evaluating
interactive visual machine learning systems. IEEE Computer Graphics
and Applications, 40(6):88–96, 2020. 2

[6] E. T. Brown, A. Endert, and R. Chang. Human-machine-learner interaction:
The best of both worlds. In Proceedings of the CHI Workshop on Human
Centred Machine Learning (HCML), 2016. 1

[7] D. Cashman, A. Perer, R. Chang, and H. Strobelt. Ablate, variate, and
contemplate: Visual analytics for discovering neural architectures. IEEE
transactions on visualization and computer graphics, 26(1):863–873, 2019.
4, 5, 6



[8] A. Chatzimparmpas, R. M. Martins, K. Kucher, and A. Kerren. Visevol:
Visual analytics to support hyperparameter search through evolutionary
optimization. In Computer Graphics Forum, vol. 40, pp. 201–214. Wiley
Online Library, 2021. 4

[9] A. Chatzimparmpas, R. M. Martins, K. Kucher, and A. Kerren. Fea-
tureenvi: Visual analytics for feature engineering using stepwise selection
and semi-automatic extraction approaches. IEEE Transactions on Vi-
sualization and Computer Graphics, 28(4):1773–1791, 2022. 4, 5, 6,
7

[10] A. Chatzimparmpas, F. V. Paulovich, and A. Kerren. Hardvis: Visual ana-
lytics to handle instance hardness using undersampling and oversampling
techniques. arXiv preprint arXiv:2203.15753, 2022. 4, 5

[11] S. Chaudhuri, V. Ganti, and R. Kaushik. Data debugger: An operator-
centric approach for data quality solutions. IEEE Data Eng. Bull., 29(2):60–
66, 2006. 5

[12] M. Chen and D. J. Edwards. “isms” in visualization. Foundations of Data
Visualization, pp. 225–241, 2020. 9

[13] F. Cheng, Y. Ming, and H. Qu. Dece: Decision explorer with counter-
factual explanations for machine learning models. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1438–1447, 2020. 4, 5, 7

[14] S. Das, D. Cashman, R. Chang, and A. Endert. Beames: Interactive
multimodel steering, selection, and inspection for regression tasks. IEEE
computer graphics and applications, 39(5):20–32, 2019. 4, 8

[15] B. Devezer, D. J. Navarro, J. Vandekerckhove, and E. O. Buzbas. The case
for formal methodology in scientific reform. 2020. doi: 10.1101/2020.04.
26.048306 9

[16] M. El-Assady, R. Kehlbeck, C. Collins, D. Keim, and O. Deussen. Seman-
tic concept spaces: Guided topic model refinement using word-embedding
projections. IEEE transactions on visualization and computer graphics,
26(1):1001–1011, 2019. 4, 8

[17] M. El-Assady, F. Sperrle, O. Deussen, D. Keim, and C. Collins. Visual
analytics for topic model optimization based on user-steerable speculative
execution. IEEE transactions on visualization and computer graphics,
25(1):374–384, 2018. 4, 8

[18] A. Endert, M. S. Hossain, N. Ramakrishnan, C. North, P. Fiaux, and
C. Andrews. The human is the loop: new directions for visual analytics.
Journal of intelligent information systems, 43(3):411–435, 2014. 2

[19] A. Endert, W. Ribarsky, C. Turkay, B. W. Wong, I. Nabney, I. D. Blanco,
and F. Rossi. The state of the art in integrating machine learning into
visual analytics. In Computer Graphics Forum, vol. 36, pp. 458–486.
Wiley Online Library, 2017. 1

[20] P. Federico, M. Wagner, A. Rind, A. Amor-Amorós, S. Miksch, and
W. Aigner. The role of explicit knowledge: A conceptual model of
knowledge-assisted visual analytics. In 2017 IEEE Conference on Vi-
sual Analytics Science and Technology (VAST), pp. 92–103. IEEE, 2017.
doi: 10.1109/VAST.2017.8585498 2

[21] M. Gleicher, A. Barve, X. Yu, and F. Heimerl. Boxer: Interactive com-
parison of classifier results. In Computer Graphics Forum, vol. 39, pp.
181–193. Wiley Online Library, 2020. 4

[22] O. Gomez, S. Holter, J. Yuan, and E. Bertini. Advice: Aggregated visual
counterfactual explanations for machine learning model validation. In
2021 IEEE Visualization Conference (VIS), pp. 31–35. IEEE, 2021. 4

[23] B. Haibe-Kains, G. A. Adam, A. Hosny, F. Khodakarami, L. Waldron,
B. Wang, C. McIntosh, A. Goldenberg, A. Kundaje, C. S. Greene,
et al. Transparency and reproducibility in artificial intelligence. Nature,
586(7829):E14–E16, 2020. 2

[24] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE transactions
on visualization and computer graphics, 25(8):2674–2693, 2018. 1, 2

[25] F. Hohman, H. Park, C. Robinson, and D. H. P. Chau. Summit: Scaling
deep learning interpretability by visualizing activation and attribution sum-
marizations. IEEE transactions on visualization and computer graphics,
26(1):1096–1106, 2019. 4, 5, 6

[26] S. R. Hong, J. Hullman, and E. Bertini. Human factors in model inter-
pretability: Industry practices, challenges, and needs. Proceedings of the
ACM on Human-Computer Interaction, 4(CSCW1):1–26, 2020. 2

[27] J. Huang, A. Mishra, B. C. Kwon, and C. Bryan. Conceptexplainer: Inter-
active explanation for deep neural networks from a concept perspective.
IEEE Transactions on Visualization and Computer Graphics, 2022. 1, 4,
5, 6

[28] X. Huang, S. Jamonnak, Y. Zhao, T. H. Wu, and W. Xu. A visual designer
of layer-wise relevance propagation models. In Computer Graphics Forum,
vol. 40, pp. 227–238. Wiley Online Library, 2021. 4, 6

[29] J. Hullman, S. Kapoor, P. Nanayakkara, A. Gelman, and A. Narayanan.
The worst of both worlds: A comparative analysis of errors in learn-
ing from data in psychology and machine learning. arXiv preprint
arXiv:2203.06498, 2022. 2, 8

[30] T. Isenberg, P. Isenberg, J. Chen, M. Sedlmair, and T. Möller. A systematic
review on the practice of evaluating visualization. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2818–2827, 2013. 3, 4, 7

[31] T. Jaunet, R. Vuillemot, and C. Wolf. Drlviz: Understanding decisions and
memory in deep reinforcement learning. In Computer Graphics Forum,
vol. 39, pp. 49–61. Wiley Online Library, 2020. 4, 8

[32] S. Jia, Z. Li, N. Chen, and J. Zhang. Towards visual explainable active
learning for zero-shot classification. IEEE Transactions on Visualization
and Computer Graphics, 28(1):791–801, 2021. 4

[33] Z. Jin, Y. Wang, Q. Wang, Y. Ming, T. Ma, and H. Qu. Gnnlens: A visual
analytics approach for prediction error diagnosis of graph neural networks.
IEEE Transactions on Visualization and Computer Graphics, 2022. 4, 7, 8

[34] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau. A cti v is: Visual
exploration of industry-scale deep neural network models. IEEE trans-
actions on visualization and computer graphics, 24(1):88–97, 2017. 4,
5

[35] M. Kahng, N. Thorat, D. H. Chau, F. B. Viégas, and M. Wattenberg. Gan
lab: Understanding complex deep generative models using interactive
visual experimentation. IEEE transactions on visualization and computer
graphics, 25(1):310–320, 2018. 4, 5, 6, 8

[36] D. Kerrigan, J. Hullman, and E. Bertini. A survey of domain knowledge
elicitation in applied machine learning. Multimodal Technologies and
Interaction, 5(12):73, 2021. 2

[37] J. Krause, A. Perer, and E. Bertini. Infuse: interactive feature selection
for predictive modeling of high dimensional data. IEEE transactions on
visualization and computer graphics, 20(12):1614–1623, 2014. 1, 4

[38] B. C. Kwon, M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon, J. Sun,
and J. Choo. Retainvis: Visual analytics with interpretable and interactive
recurrent neural networks on electronic medical records. IEEE trans-
actions on visualization and computer graphics, 25(1):299–309, 2018.
4

[39] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale. Empirical
studies in information visualization: Seven scenarios. IEEE transactions
on visualization and computer graphics, 18(9):1520–1536, 2011. 7

[40] T. Liao, R. Taori, I. D. Raji, and L. Schmidt. Are we learning yet? a
meta review of evaluation failures across machine learning. In Thirty-
fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021. 2

[41] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu. Analyzing the noise robustness
of deep neural networks. In 2018 IEEE Conference on Visual Analytics
Science and Technology (VAST), pp. 60–71. IEEE, 2018. 4, 7

[42] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training pro-
cesses of deep generative models. IEEE transactions on visualization and
computer graphics, 24(1):77–87, 2017. 4, 6, 7

[43] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE transactions on visualization
and computer graphics, 23(1):91–100, 2016. 2, 3, 4, 5, 6, 7, 8, 9

[44] S. Liu, J. Xiao, J. Liu, X. Wang, J. Wu, and J. Zhu. Visual diagnosis of
tree boosting methods. IEEE transactions on visualization and computer
graphics, 24(1):163–173, 2017. 4, 8

[45] S. McKenna, D. Mazur, J. Agutter, and M. Meyer. Design activity frame-
work for visualization design. IEEE Transactions on Visualization and
Computer Graphics, 20(12):2191–2200, 2014. 9

[46] P. E. Meehl. Why summaries of research on psychological theories are
often uninterpretable. Psychological reports, 66(1):195–244, 1990. 9

[47] M. Meyer and J. Dykes. Criteria for rigor in visualization design study.
IEEE transactions on visualization and computer graphics, 26(1):87–97,
2019. 8, 9

[48] M. Meyer, M. Sedlmair, P. S. Quinan, and T. Munzner. The nested blocks
and guidelines model. Information Visualization, 14(3):234–249, 2015. 9

[49] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu. Under-
standing hidden memories of recurrent neural networks. In 2017 IEEE
conference on visual analytics science and technology (VAST), pp. 13–24.
IEEE, 2017. 4, 7

[50] Y. Ming, H. Qu, and E. Bertini. Rulematrix: Visualizing and understanding
classifiers with rules. IEEE transactions on visualization and computer
graphics, 25(1):342–352, 2018. 4, 8

[51] Y. Ming, P. Xu, F. Cheng, H. Qu, and L. Ren. Protosteer: Steering deep
sequence model with prototypes. IEEE transactions on visualization and

https://doi.org/10.1101/2020.04.26.048306
https://doi.org/10.1101/2020.04.26.048306
https://doi.org/10.1109/VAST.2017.8585498


computer graphics, 26(1):238–248, 2019. 4, 6
[52] S. Mohseni, N. Zarei, and E. D. Ragan. A multidisciplinary survey and

framework for design and evaluation of explainable ai systems. ACM
Transactions on Interactive Intelligent Systems (TiiS), 11(3-4):1–45, 2021.
2

[53] T. Munzner. A nested model for visualization design and validation. IEEE
transactions on visualization and computer graphics, 15(6):921–928, 2009.
9

[54] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Def-
initions, methods, and applications in interpretable machine learning.
Proceedings of the National Academy of Sciences, 116(44):22071–22080,
2019. 8

[55] F. Neutatz, B. Chen, Z. Abedjan, and E. Wu. From cleaning before ml to
cleaning for ml. IEEE Data Eng. Bull., 44(1):24–41, 2021. 2

[56] S. Nie, C. Healey, K. Padia, S. Leeman-Munk, J. Benson, D. Caira, S. Sethi,
and R. Devarajan. Visualizing deep neural networks for text analytics.
In 2018 IEEE Pacific Visualization Symposium (PacificVis), pp. 180–189.
IEEE, 2018. 4

[57] C. North. Toward measuring visualization insight. IEEE Computer Graph-
ics and Applications, 26(3):6–9, 2006. doi: 10.1109/MCG.2006.70 7

[58] C. Park, S. Yang, I. Na, S. Chung, S. Shin, B. C. Kwon, D. Park, and
J. Choo. Vatun: Visual analytics for testing and understanding convo-
lutional neural networks. In Eurographics Conference on Visualization
(EuroVis)-Short Papers, 2021. 4

[59] H. Park, N. Das, R. Duggal, A. P. Wright, O. Shaikh, F. Hohman, and
D. H. P. Chau. Neurocartography: Scalable automatic visual summa-
rization of concepts in deep neural networks. IEEE Transactions on
Visualization and Computer Graphics, 28(1):813–823, 2021. 4

[60] N. Pezzotti, T. Höllt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and
A. Vilanova. Deepeyes: Progressive visual analytics for designing deep
neural networks. IEEE transactions on visualization and computer graph-
ics, 24(1):98–108, 2017. 4, 6

[61] A. Rathore, N. Chalapathi, S. Palande, and B. Wang. Topoact: Visually
exploring the shape of activations in deep learning. In Computer Graphics
Forum, vol. 40, pp. 382–397. Wiley Online Library, 2021. 4, 5, 7, 8

[62] D. Sacha, M. Kraus, D. A. Keim, and M. Chen. Vis4ml: An ontology
for visual analytics assisted machine learning. IEEE transactions on
visualization and computer graphics, 25(1):385–395, 2018. 1, 2

[63] D. Sacha, M. Sedlmair, L. Zhang, J. A. Lee, D. Weiskopf, S. North,
and D. Keim. Human-centered machine learning through interactive
visualization. ESANN, 2016. 1, 2

[64] D. Sacha, A. Stoffel, F. Stoffel, B. C. Kwon, G. Ellis, and D. A. Keim.
Knowledge generation model for visual analytics. IEEE Transactions on
Visualization and Computer Graphics, 20(12):1604–1613, 2014. doi: 10.
1109/TVCG.2014.2346481 2

[65] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:
Reflections from the trenches and the stacks. IEEE transactions on visual-
ization and computer graphics, 18(12):2431–2440, 2012. 9

[66] S. Sietzen, M. Lechner, J. Borowski, R. Hasani, and M. Waldner. Interac-
tive analysis of cnn robustness. In Computer Graphics Forum, vol. 40, pp.
253–264. Wiley Online Library, 2021. 4, 7, 8

[67] D. J. Simons, Y. Shoda, and D. S. Lindsay. Constraints on generality (cog):
A proposed addition to all empirical papers. Perspectives on Psychological
Science, 12(6):1123–1128, 2017. 9

[68] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 3

[69] D. Smilkov, N. Thorat, C. Nicholson, E. Reif, F. B. Viégas, and M. Wat-
tenberg. Embedding projector: Interactive visualization and interpretation
of embeddings. arXiv preprint arXiv:1611.05469, 2016. 2

[70] F. Sperrle, M. El-Assady, G. Guo, R. Borgo, D. H. Chau, A. Endert, and
D. Keim. A survey of human-centered evaluations in human-centered
machine learning. In Computer Graphics Forum, vol. 40, pp. 543–568.
Wiley Online Library, 2021. 1, 2, 7, 8, 9

[71] F. Sperrle, M. El-Assady, G. Guo, D. H. Chau, A. Endert, and D. Keim.
Should we trust (x) ai? design dimensions for structured experimental
evaluations. arXiv preprint arXiv:2009.06433, 2020. 1, 2

[72] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. S eq 2s eq-v is: A visual debugging tool for sequence-to-sequence
models. IEEE transactions on visualization and computer graphics,
25(1):353–363, 2018. 4, 5, 7, 8

[73] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. Lstmvis: A tool
for visual analysis of hidden state dynamics in recurrent neural networks.

IEEE transactions on visualization and computer graphics, 24(1):667–676,
2017. 4, 5, 6, 7, 9

[74] A. Tyagi, C. Xie, and K. Mueller. Nas-navigator: Visual steering for
explainable one-shot deep neural network synthesis. IEEE Transactions
on Visualization and Computer Graphics, 1912. 4

[75] A. Tyagi, C. Xie, and K. Mueller. Nas-navigator: Visual steering for
explainable one-shot deep neural network synthesis. IEEE Transactions
on Visualization & Computer Graphics, (01):1–11, 2022. 7

[76] S. Van Den Elzen and J. J. Van Wijk. Baobabview: Interactive construction
and analysis of decision trees. In 2011 IEEE conference on visual analytics
science and technology (VAST), pp. 151–160. IEEE, 2011. 4, 6

[77] L. Von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese,
B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy, et al. Informed machine
learning–a taxonomy and survey of integrating knowledge into learning
systems. arXiv preprint arXiv:1903.12394, 2019. 2

[78] J. Wang, L. Gou, H.-W. Shen, and H. Yang. Dqnviz: A visual analytics ap-
proach to understand deep q-networks. IEEE transactions on visualization
and computer graphics, 25(1):288–298, 2018. 4, 6, 7

[79] J. Wang, L. Gou, W. Zhang, H. Yang, and H.-W. Shen. Deepvid: Deep
visual interpretation and diagnosis for image classifiers via knowledge
distillation. IEEE transactions on visualization and computer graphics,
25(6):2168–2180, 2019. 4

[80] J. Wang, W. Zhang, and H. Yang. Scanviz: Interpreting the symbol-concept
association captured by deep neural networks through visual analytics. In
2020 IEEE Pacific Visualization Symposium (PacificVis), pp. 51–60. IEEE,
2020. 4, 5, 6

[81] J. Wang, W. Zhang, H. Yang, C.-C. M. Yeh, and L. Wang. Visual ana-
lytics for rnn-based deep reinforcement learning. IEEE Transactions on
Visualization and Computer Graphics, 28(12):4141–4155, 2021. 4, 6, 8

[82] X. Wang, W. Chen, J. Xia, Z. Wen, R. Zhu, and T. Schreck. Hetvis: A
visual analysis approach for identifying data heterogeneity in horizontal
federated learning. IEEE Transactions on Visualization and Computer
Graphics, 29(1):310–319, 2022. 4

[83] Z. J. Wang, R. Turko, O. Shaikh, H. Park, N. Das, F. Hohman, M. Kahng,
and D. H. P. Chau. Cnn explainer: learning convolutional neural networks
with interactive visualization. IEEE Transactions on Visualization and
Computer Graphics, 27(2):1396–1406, 2020. 4, 5, 7, 8

[84] M. Wattenberg, F. Viégas, and I. Johnson. How to use t-sne effectively.
Distill, 1(10):e2, 2016. 7

[85] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and
J. Wilson. The what-if tool: Interactive probing of machine learning mod-
els. IEEE transactions on visualization and computer graphics, 26(1):56–
65, 2019. 4, 6, 8

[86] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mane, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing dataflow graphs
of deep learning models in tensorflow. IEEE transactions on visualization
and computer graphics, 24(1):1–12, 2017. 4

[87] T. Wu, M. T. Ribeiro, J. Heer, and D. S. Weld. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 747–763,
2019. 4, 7

[88] S. Xiang, X. Ye, J. Xia, J. Wu, Y. Chen, and S. Liu. Interactive correction
of mislabeled training data. In 2019 IEEE Conference on Visual Analytics
Science and Technology (VAST), pp. 57–68. IEEE, 2019. 1, 4, 6, 8

[89] W. Yang, X. Ye, X. Zhang, L. Xiao, J. Xia, Z. Wang, J. Zhu, H. Pfister,
and S. Liu. Diagnosing ensemble few-shot classifiers. IEEE Transactions
on Visualization and Computer Graphics, 28(9):3292–3306, 2022. 4

[90] J. S. Yi, Y.-a. Kang, J. T. Stasko, and J. A. Jacko. Understanding and
characterizing insights: how do people gain insights using information
visualization? In Proceedings of the 2008 Workshop on BEyond time and
errors: novel evaLuation methods for Information Visualization, pp. 1–6,
2008. 7

[91] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu. A survey of visual
analytics techniques for machine learning. Computational Visual Media,
7(1):3–36, 2021. 1, 2

[92] X. Zhang, J. P. Ono, H. Song, L. Gou, K.-L. Ma, and L. Ren. Sliceteller:
A data slice-driven approach for machine learning model validation. IEEE
Transactions on Visualization and Computer Graphics, 29(1):842–852,
2022. 4

[93] X. Zhao, Y. Wu, D. L. Lee, and W. Cui. iforest: Interpreting random forests
via visual analytics. IEEE transactions on visualization and computer
graphics, 25(1):407–416, 2018. 4, 8

https://doi.org/10.1109/MCG.2006.70
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481

	Introduction
	Background
	Taxonomizing VIS4ML
	Knowledge generation through visual data analysis
	Challenges in Evaluating Human-in-the-loop ML

	Methodology
	Paper Selection
	Codebook Development
	Coding and Analysis Procedure

	Findings
	Characterizing Humans in VIS4ML
	Assumptions about Prior Knowledge and Skills

	Scope of ML Components and Modeling Pipeline
	Datasets and Model Types in VIS4ML Implementation

	Human-in-the-loop Tasks
	Forms of Human Generated Insights
	Model Signals for Insights
	Insight-informed Actions

	VIS4ML Implementation and Evaluation
	Post-Hoc Interpretability Methods
	VIS4ML Evaluation


	Discussion
	Threats to Generalizability
	Recommendations for Action
	Documenting Constraints on Generalizability
	Tightening Logical Derivation Chains
	Bridging from Design Studies to VIS4ML in Practice


	Conclusion
	Acknowledgments

