
Spellburst: A Node-based Interface for Exploratory Creative
Coding with Natural Language Prompts

Tyler Angert*
tyler@replit.com

Replit
San Francisco, USA

Miroslav Ivan Suzara*
msuzara@stanford.edu
Stanford University

Stanford, USA

Jenny Han*
jennyhan@cs.stanford.edu

Stanford University
Stanford, USA

Christopher Lawrence Pondoc
clpondoc@stanford.edu
Stanford University

Stanford, USA

Hariharan Subramonyam
harihars@stanford.edu
Stanford University

Stanford, USA

Figure 1: Exploratory Creative Coding using Spellburst: (a) the artist uses a natural language prompt to generate an initial
sketch based on semantic intent, (b) uses the dynamic prompt-driven slides to rapidly refine the output, and (c) performs
fine-grained adjustments through direct code-editing.

ABSTRACT
Creative coding tasks are often exploratory in nature. When produc-
ing digital artwork, artists usually begin with a high-level semantic
construct such as a “stained glass filter” and programmatically
implement it by varying code parameters such as shape, color,
lines, and opacity to produce visually appealing results. Based on
interviews with artists, it can be effortful to translate semantic con-
structs to program syntax, and current programming tools don’t
lend well to rapid creative exploration. To address these challenges,
we introduce Spellburst, a large language model (LLM) powered
creative-coding environment. Spellburst provides (1) a node-based
interface that allows artists to create generative art and explore vari-
ations through branching and merging operations, (2) expressive
prompt-based interactions to engage in semantic programming,
and (3) dynamic prompt-driven interfaces and direct code editing
to seamlessly switch between semantic and syntactic exploration.
Our evaluation with artists demonstrates Spellburst’s potential to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0132-0/23/10. . . $15.00
https://doi.org/10.1145/3586183.3606719

enhance creative coding practices and inform the design of compu-
tational creativity tools that bridge semantic and syntactic spaces.

CCS CONCEPTS
•Human-centered computing→Natural language interfaces;
Graphical user interfaces; • Software and its engineering→
Software version control; • Applied computing→ Fine arts.

KEYWORDS
large language models, exploratory programming, creative coding,
generative art, prompt engineering

ACM Reference Format:
Tyler Angert*, Miroslav Ivan Suzara*, Jenny Han*, Christopher Lawrence
Pondoc, and Hariharan Subramonyam. 2023. Spellburst: A Node-based In-
terface for Exploratory Creative Coding with Natural Language Prompts. In
The 36th Annual ACM Symposium on User Interface Software and Technology
(UIST ’23), October 29-November 1, 2023, San Francisco, CA, USA. ACM, New
York, NY, USA, 22 pages. https://doi.org/10.1145/3586183.3606719

1 INTRODUCTION
Creative coding is an expressive and exploratory activity. When
producing artwork, artists often begin with high-level constructs
grounded in mimesis or metaphors and programmatically explore
digital renditions of their ideas [21, 24, 40]. For instance, imagine

* indicates equal contribution by authors.

https://doi.org/10.1145/3586183.3606719
https://doi.org/10.1145/3586183.3606719

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

creating art inspired by the reflective behavior of light. Starting
with the idea of stained glass windows, the artist may write code
to generate a glass effect on the digital canvas. They may then
rapidly explore variations by adjusting the color and translucency
of the glass, angle of light reflection, amount of refraction, etc.
Finally, based on outcomes, they may take a larger creative jump
and explore a different construct, such as the reflection of moonlight
on water. Across these exploratory tasks, artists (1) repeatedly
translate expressive semantic intents into lines of code, (2) keep
track of different creative variations, and (3) compare, combine,
and extend emergent outputs to further exploration. Unfortunately,
existing programming environments don’t lend themselves well
to this form of creative exploratory process [6]. While the needs
of artists engaged in creative coding tasks overlap with traditional
programming, they require specific affordances for rapid iteration
and semantic exploration.

First, creative coding is experimentation-heavy. During explo-
ration, artists would benefit from systems that help them quickly
and intentionally keep track of intermediate visual outputs and cor-
responding specifications. Current versioning strategies are largely
disconnected from programming environments and demand a sep-
arate workflow to commit and retrieve program states. This intro-
duces friction in artists’ creative processes to document outputs for
later consideration. Artists may have to repeatedly capture screen-
shots of their evolving art and manually associate them with corre-
sponding code either through versioned code files or commented
code snippets. Second, given the emphasis on visual outputs as
feedback and inspiration for subsequent exploration, artists would
benefit from ways to visualize and compare generated outputs. Cur-
rent programming tool layouts primarily consist of a side-by-side
text editor and output view, making it challenging to visually com-
pare results across multiple “runs” of the program. While recent
tools address issues of comparing different outputs [37, 74, 83],
they are still primarily disconnected from generative coding tasks
(e.g., combining line attributes from one output with color from a
different exploratory path) [7].

Third, as mentioned in the light reflection example, larger cre-
ative jumps are often grounded in semantic constructs. When such
jumps occur during creative thinking, artists spend a significant
amount of time programmatically authoring initial representations
of the new idea. Consequently, they may take fewer creative shifts
and fixate on incremental variations of their initial ideas [39, 53].
An advantage of the recent generative AI tools based on large lan-
guage models (LLMs) is that they allow artists to quickly explore
divergent ideas through expressive natural language prompts (e.g.,
Adobe Firefly [2]). However, finer editing using natural language
prompts can be tedious (e.g., “increase the line thickness by 5 pix-
els”). Artists benefit from executing larger creative shifts using
semantic prompts, while program syntax (or dedicated interface
controls) may be better suited for fine-grained exploration and
control. Thus, the motivating question for our work is how can
we incorporate generative AI capabilities within current creative pro-
gramming workflows to support exploratory generative art-making?

By conducting formative interviews with ten expert creative
coders, we identified ways in which artists navigated semantic and
syntactic spaces, distinct tasks in their creative exploratory work-
flows, and pain points due to limitations of existing tools. Based on

insights from the study, we developed Spellburst, a visual interface
for exploratory programming. The primary view in Spellburst is a
node-based layout in which each node represents a creative output
along with backing code. Artists can use branching and merging
interactions to clone, extend, and combine different variations. As
shown in Figure 1, to execute larger semantic jumps, Spellburst sup-
ports a natural language prompting interface to generate code, and
artists can further refine the generated code either through dynamic
prompt-driven interface controls or directly edit the code in the
code editor. We conducted an online survey with 52 crowd-sourced
participants to understand the range of natural language prompts
for specific creative tasks. Based on insights from the survey, we
implemented Spellburst to support seamless switching between
prompt-based exploration and program editing, and the visual lay-
out helps them keep track of the creative exploration process. We
evaluated Spellburst with 10 expert artists across controlled and
open-ended creative tasks.

We contribute (1) Spellburst, a node-based visual programming
interface for exploratory programming tasks, (2) expressive prompt-
ing support for creative experimentation, and (3) interface affor-
dances for semantic-syntactic integration to flexibly execute larger
creative shifts and fine-grained code-editing.

2 RELATEDWORK
Creative coding is a branch of computer programming where the
purpose is to create artistic and expressive output rather than func-
tional output [58, 68]. Generative art is a specific approach to cre-
ative coding in which artists “program computers to undertake cre-
ative instructions” [16, 75, 79]. Mathematical and computational
algorithms are central to this approach. In producing art, artists
engage in the exploration and experimentation of code to produce
variations of algorithms and outputs [6, 35, 36]. During this process,
they encounter phenomena such as emergence, randomness, and
interaction to produce creative results [16, 59, 60, 79].

Today, artists may use programming tools such as Processing
[62], p5.js [48], OpenFrameworks [44], and TouchDesigner [15]
to create their artwork. Within these tools, exploration by pro-
gramming takes place through edit-run cycles in close proximity
[35, 36, 50]. However, this can also vary by scale (i.e., changing a
specific variable versus file-level changes) and duration (i.e., pertain-
ing to one particular element versus a broader computational model
that is being explored) [6]. This contrasts with traditional concep-
tualizations of programming, where specifications are typically
mapped out in advance and for functional purposes. In Spellburst,
our goal is to support open-ended creative experimentation.

We narrow our focus to three specific needs for creativity sup-
port tools (CST) within the realm of exploratory creative coding: (1)
version control systems for history-keeping [71], (2) higher closeness
of mapping between semantic concepts and syntactic representa-
tions in creativity support tools [6, 23], and (3) AI augmentation
for creative exploration [19, 71].

2.1 Tracking Exploration History
A user’s personal code history is an important site for exploration
and for management of alternatives, especially in creative set-
tings [71, 72]. Existing history-keeping or version control systems

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

such as Git offer features for documenting previous alternatives
but are costly to use in terms of time and effort [6, 12, 36]. Creative
coders might prefer informal or manual versioning methods such as
taking screenshots or screen captures of each run and copy-pasting
code [36, 43, 72]. Second, current version control systems are not
explicitly designed for rapid iteration and remixing on prior states.
Creative work is often non-linear; artists jump back to previous
work or explore multiple ideas in parallel [43]. Using tools such
as Git to create new branches, revert to previous states, or merge
branches creates friction that disrupts an artist’s flow or process.

Previous qualitative studies with artists emphasize the impor-
tance of designing and co-designing with artists’ mental models
for code and code versions in mind [43, 61, 72]. Like artists who
work with physical media, generative artists also engage deeply
with the materiality of their work [61]; they pay special attention
to the properties, expressiveness, and craftsmanship of their soft-
ware [56, 61]. They may view their versions as panels to “pin up”
for review [12], or they may think of their versions as a “palette of
materials” with which to mix, experiment, and use [72].

Existing work on novel version control systems for coding has
aimed to support rapid iteration and exploration by allowing paral-
lel source editing and execution [26], providing a sandbox environ-
ment to quickly test, save or discard “microversions” of code [36, 50],
and storing each commit as a node in a graph alongside annota-
tions, screenshots, or other key semantic information [12, 29, 61].
Spellburst builds on this work in a new direction by using AI to
support iteration and manage code versions.

2.2 Support for Expressive Programming
Creative coders work across a semantic-syntactic divide, as de-
scribed by Reas [60]. Artists often envision and explicate their work
through visual metaphors [17] or rich verbal descriptions [76].
When using programming languages to create art, artists must
then map expressive intents in the semantic space (i.e., “undulating
waves of color,” a doodle of a design) to low-level program syntax
(i.e., p5.js functions such as lerp() or sin()) [60, 79]. However,
effectively mapping semantic concepts to low-level code can be
difficult for creative coders of all levels [32, 77]. Prior research
in visual programming languages (VPLs) [52] have looked at re-
ducing friction by presenting some components of the code via
two-dimensional visuals. For example, block-based programming
languages such as Scratch [46] or node-based programming lan-
guages such as TouchDesigner, Stamper [12], and natto.dev [67]
help users abstract important aspects such as control flow, vari-
ables, and data into visual representations. By leveraging advances
in computer vision, systems such as Sketch2Code [33] directly map
hand-drawn sketches to HTML code.

Recent advancements in generative AI and text-to-code models
such as Codex and Copilot have allowed users to write code using
natural language prompts and autocomplete features within inte-
grated development environments (IDEs) such as VSCode [1] and
Replit [63]. LLMs have accelerated the progress in bridging seman-
tic and syntactic space by autonomously mapping natural language
prompts to code output. Anecdotally, ChatGPT has already been
integrated into common creative tools such as Unity and Adobe

Suite. However, publically available LLMs are not necessarily opti-
mized for a creative coding context. Mapping parameters within a
high-dimensional design space to human language and feedback
requires domain-specific frameworks [69].

While VPLs and natural language tools provide more accessi-
ble representations of code, direct manipulation interfaces provide
more accessible interactions with code. One example of a system
with a physical direct manipulation interface is Dynamic Brushes,
which maps input data from a physical stylus to digital properties
such as position, aesthetic style, and geometric transformations [31].
Other systems involve digital interfaces for manipulation, the sim-
plest of which involve sliders, toggles, and tuners within a block of
code to allow users to tweak parameter values [26, 77]. Drawing
on this body of work, Spellburst incorporates visual node-based
programming, natural language prompting with auto-complete sug-
gestions, and direct manipulation interfaces in an attempt to bridge
the semantic-syntactic divide for generative artists.

2.3 AI Augmentation for Creative Tasks
In creative thinking, artists draw inspiration from others’ work [71].
Research shows that novel ideas may arise from the “genetic re-
combination” of many people’s work [38]. In Spellburst, we are
interested in how AI, particularly LLMs, can augment human cre-
ative capabilities and inspire new forms of artistic expression as
a collaborator. Text-to-Image (TTI) models such as Midjourney,
Stable Diffusion [64], and DALL-E [55] have proliferated, but our
mental models for interacting with prompt- and chat-interfaces are
nascent. For example, given the stochastic nature of the models,
it may take several generations of the same prompt to provide a
suitable output [45]. The black-boxed nature of the TTI models does
not always allow for low-level control, which may be frustrating to
some artists [41]. One current way artists ensure somewhat repro-
ducible and desired results is by creating a prompt template [13];
for example, a simple template might be “SUBJECT in the style
of STYLE” [45]. Overall, research has shown that prompt-based
LLMs are useful for fast iteration and quick combination of ideas
[41], and early work points to potential for novel interfaces for
multi-modal input, iterative inputs, and gesture-based input [41].
Spellburst focuses on iterative and non-linear prompts in particular.

Auto-complete interfaces for code, such as Copilot and Ghost-
writer, are becoming more powerful [4, 51]. Such AI assistants help
programmers in two ways: acceleration (i.e., when the user already
knows what to do) and exploration (i.e., when a user does not
know what to do next) [4]. However, it is important to consider the
additional cognitive load on users to process auto-complete recom-
mendations from the AI. When such tools were in use, the most
time-consuming task for developers became “verifying/thinking
suggestions” from the AI, which highlights the importance of a
cognitively informed workflow.

3 FORMATIVE INTERVIEWSWITH EXPERTS
To better understand the challenges faced by creative coders and
inform the design of Spellburst, we conducted need-finding inter-
views with 10 expert creative coders. The study interrogated how
artists currently set up their exploratory creative workflow, their

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

approach for navigating between semantic and syntactic spaces
during exploration, and how they manage iterations.

3.1 Method
We interviewed 10 experts in creative coding who identified as gen-
erative artists (𝑛 = 4), software engineers (𝑛 = 2), visual designers
(𝑛 = 2), game developers (𝑛 = 1), and creative coding educators
(𝑛 = 1). Detailed demographic information can be found in the
appendix (section A.6). Participants were recruited through word
of mouth, social media posts, and snowball sampling. 7 of our par-
ticipants were male, and 3 were female. All participants had 3+
years of programming experience so as not to conflate exploratory
programming practices and novice programming practices [36].
90% of our participants had 5+ years of programming experience.
Each semi-structured interview lasted between 45 minutes to an
hour, and participants were compensated with $25 for their time.

In the first part of the interview, we asked questions related to
participants’ creative processes. Example questions included “How
do you explore new creative options in your work?”, “How do you
iterate on your current work”, “Can you tell us a time when you
went back to a previous version of your code?” In addition, we
asked participants about their approach to versioning and history
tracking and their experience co-creating art with AI, if any. Next,
as a contextual inquiry task, we asked participants to show us a
recent creative project and walk us through their virtual workspace,
including code files, IDE, and output viewing interfaces. 8 out of 10
participants chose to share a creative coding project; 1 spoke about
an art project in Figma, and 1 spoke about an animation project in
Adobe AfterEffects.

In the final part of the interview, we presented participants with
a 20-minute open-ended creative coding task to see how they en-
gaged in exploratory programming in real-time; the task required
each participant to create a digital brush using mouse interaction
based on simple starter code in p5.js. During this task, participants
shared their screen via Zoom and used a think-aloud protocol to
narrate their thoughts as they iterated on the starter code using
Replit, an online IDE. Video recordings of the sessions were then
transcribed. Two members of the research team watched all the
videos and included relevant screenshots at appropriate points
in the transcript documents. The same two members then read
through all of the interview transcripts and conducted inductive
coding [73] on ATLAS.ti [3] and identified key insights related to
iteration, creativity, and exploratory programming. Through multi-
ple rounds of discussions, we clustered the insights into high-level
themes via affinity clustering and thematic analysis [9].

3.2 Findings and Design Considerations
3.2.1 Parameter- and accident-driven exploratory programming.
Many of the participants described their exploratory process as
parameter-driven, in which their exploration is based on tweaking
a set of variables, which U9 referred to as “magic constants.” U4
organizes their code by placing all of their parameters at the top
of the file: “I don’t really have a great standing process for tracking
versions, and I kind of just make a mental note, or just write down
parameters that lead to something that I like. . . I like to chunk and
get all the things that I would be modifying in one place and get all

the things that are fairly static out of the way." When asked how
they knew that they were iterating on parameters in the right di-
rection, many participants pointed to previous experience. They
explained that experts typically drew from previously used parame-
ters from prior work. One commonly used pattern that experts used
in the open-ended task involved constraining circular movement
using the parameter range of −𝜋/4 to 𝜋/4 radians. Therefore, CSTs
should allow artists to maintain fine-grained control over the
parameters they are manipulating (Design Consideration 1).

Other times, iterations on parameters came about through a pro-
cess of trial-and-error, which some participants termed “accident-
driven development.” U3 describes a time when she uncovered a
new idea in a p5.js sketch: “I messed up what I was connecting, and
then I ended up with two objects connected in the middle. . . so I think
the little accidents are the inspiration.” During such discovery, sur-
facing parameters while running and testing code was another
point of conversation; this was sometimes done through console
statements or small helper functions. U7 described writing “de-
bug” functions which programmed hotkey buttons to show him
the range of possible outputs while he was running a 3D game
simulation, especially in situations where controlled randomness
was required. U5 described the cycle of iterating on a particular
parameter, running the code, and analyzing the result as a feedback
loop: “If I had like a little slider to make [this particular parameter]
more or less like I was just tuning constantly. . . If there was a way
to make that feedback loop quicker, that’d be perfect.” Thus, CSTs
should allow participants to read and manipulate parameter
values (D2) easily and readily see the output to support rapid
creative exploration (D3).

3.2.2 Version control practices. Because creative exploration is of-
ten brought about by unintended changes, participants described
mental friction between the exploratory process and the intentional
process of committing and summarizing changes via version control
systems like Git. In both parameter- and accident- driven devel-
opment, tightly bound cycles of iteration, execution, and analysis
were observed: “So I do a lot of it in my head or like taking notes
and stuff like that, and so I’ll run it [and] see what happens” (U7).
Most participants chose not to use a version control system when
creating personal projects despite having familiarity with Git. U10,
one of the few who did use Git for creative work, described the
friction using Git commits and branches in this way: “It just required
too much planning ahead when this process [creative exploration] is
not about planning ahead; it’s about seeing where you go.”

Instead, many participants described their informal versioning
practices (similar to [36]). As a workaround, participants would
duplicate files or code snippets and comment them out when not in
use. Alternatively, three other participants described a process of
tracking changes in working memory or by jotting notes down, say-
ing some variation of “I just remember what I did previously”: “I do
a lot of like. . . open up notepad and write down what was good [while
running], and then, just remember that so it’s definitely more of a
conceptual than a version control thing” (U7). Therefore CSTs should
provide versioning and tracking as an integrated experience
with the rapid exploration process (D4).

In addition to tracking code configurations that produced salient
outputs, participants also used informal versioning practices to

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

keep track of the visual outputs of the code. Participants would
track changes by running and storing the outputs via screenshots,
and video captures (e.g., “versionFinal.jpg”, “versionFinalFinal.jpg”).
While these were arguably lower fidelity than Git commits that
included code [72], participants found this helpful to capture the
semantic constructs that they were experimenting with at the time.
As U3 described: “So the way I iterated was whenever I had something
distinct enough that I wanted to save, I would just duplicate the p5
file and name it, then move on. . . So, from one generation to the other,
I probably just saved it duplicated and then started working on top of
that. It’s very jank version control.” However, the outputs were often
detached from code or any other useful history-related metadata.
In this way, CSTs should provide ways to effortlessly track the
emergent visual outputs during exploration along with the
underlying code that produced the output (D5).

3.2.3 Interest in AI Augmented Creative Exploration. The inter-
views were conducted in the summer of 2022. At that time, Chat-
GPT was not yet publicly available, but most artists had heard of
and experimented with TTI models, code generation with Copilot,
and other LLMs. Most participants were unsure how they felt about
using AI in their personal projects. U3 stated that she “used to
be very much against it” and would only consider using it after
the bulk of the creative work was completed. U10 similarly felt AI
would be good for “post-processing.” He thought about AI as a way
to add “filters” on top of his work: “I don’t want to use [AI] for the
core of my thing, but I could see using it for enhancing whatever I just
did. So like if I created some pattern, I could [ask AI to] give it a great
bloom effect or add a bunch of film grain.”

Participants did feel comfortable and excited about using AI
to generate expressive prompts for inspiration, as it could help
them explore new creative directions and overcome creative blocks.
When asked if they could imagine iterating on creative code with a
computer, they emphasized the importance of the human leading
the creative process. U9 compared the utility of AI to a randomize
feature that provides suggestions for new parameters for him to try.
U10 suggested that the AI could be trained on his personal history:
“Maybe it could learn from myself. All the other tools are learning
from the world at large and existing art. I wonder if it could learn
from the way that I do things. I wonder if it could be throwing up
suggestions or provocations. . . side by side [while I code].”

In summary, AI-augmented CSTs should offer different types
of AI support for different parts of the creative process (be-
ginning vs. iteration vs. end) and allow the artist to maintain
creative control at all times (D6) .

4 USER EXPERIENCE
Spellburst is designed to facilitate rapid exploration and visualiza-
tion of a large tree of possibilities while simultaneously preserving
exploration history (D4 and D5). As shown in Figure 2, Spellburst’s
user interface consists of an infinite zoomable canvas containing
one or more node-based layouts. The node layouts follow a hier-
archical tree structure, and each node is either a sketch or an

— operator →. Sketch nodes represent p5.js [47] programs that
are compiled and rendered to a canvas. The root node indicates a
starting sketch for a creative path. — Operator → nodes are links

Figure 2: Overview of Spellburst’s User Interface

Figure 3: Sketches created by Ash during an exploratory cre-
ative coding session, color-coded by node type.

that indicate the following exploratory programming operations:
modification, merging, duplication, diffing, and extraction. Some
of these operator nodes allow natural language inputs; all of them
output new sketches based on source sketches and prompts.

To demonstrate our system’s features and user experience, we
describe how Ash, a creative coder, creates and iterates upon a
generative art project using Spellburst.

4.1 Set-up
Ash has a conceptual idea about concentric circles to inspire her ex-
ploration. She opens Spellburst on her web browser, which presents
a blank canvas with a floating add node ‘+’ button (Figure 4 a). Ash
clicks on the button to create a root node, which is a sketch . Next,
she clicks on the ‘show code’ button on the root node, which brings
up the code editor to the left of the canvas (Figure 4 b). Here, she

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

Figure 4: Setup and basic high-level controls of Spellburst

can author an initial sketch from scratch or copy code for concen-
tric circles from sources on the web (such as the p5.js [47] gallery).
Ash pastes the p5.js code snippet to render four concentric circles
from the web, which displays the output on the root node (Figure 3
Sketch 0). Spellburst also has an ‘Examples’ tab with a set of starter
code for basic shapes.

4.2 Focused Exploration
Starting with the initial root sketch node, Ash clicks on the but-

ton on the right edge of the node and selects the — duplicate →
operator in the popup menu (Figure 4 c). This creates a copy of
the root node and is visualized as a child sketch node to the root
node. Compared to platforms like Fork It [81], Spellburst is designed
to encourage iteration and “accident-driven development” rather
than just executing nodes in parallel. Thus, all sketch nodes are
connected to an operations menu, where selecting an option is
required to continue adding nodes to the branch rather than being
purely open-ended.

In the newly created copy, Ash modifies the sketch’s code in
the code-editor to algorithmically randomize the line thickness.
By repeatedly making copies of the previous node, Ash explores

different approaches to varying line thickness (Figure 3 Sketches 1
and 2). At this point, Ash decides to explore color variations.

However, she wishes to explore colors separately from line thick-
ness. Selecting one of the previous sketches as the base, she initiates

a
branch−−−−−→ operation by selecting from the button on the edge be-

tween the original sketch and its duplicate node (Figure 4 d). Note
that unlike platforms like natto.dev [67], our edges aren’t freeform
and arbitrary. They are generated from duplicating and iterating
on existing sketches and prompts rather than being derived from
code dependencies. In this new branch, Ash explores variations of
color by directly editing the attributes and functions in the code
editor, which produces Sketches 3 and 4 in Figure 3. As we will see
later, Ash can also use natural language prompts to execute these
changes, but based on our interviews, artists prefer greater control
over familiar attributes (D1 and D6).

4.3 Exploring Large Creative Jumps
At this point, Ash imagines a new idea of circles representing the
planetary orbits of our solar system. She decides to use Spellburst’s
natural language prompt to explore this new direction. Clicking
on the initial sketch node, Ash initiates a — modify → operator,
which brings up a prompting interface along the link (Figure 5 a).

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 5: Modification, merging, and semantic sliders powered by LLMs

In the text box, Ash enters the prompt “Pretend the circles are the
orbit of planets of our solar system. Add some fake planets and a sun.”
Using the previous sketch and the prompt as inputs, Spellburst
generates a new sketch node with an animated output showing
several concentric circles and elliptical objects of different sizes
animating along the orbits (Figure 3 Sketch 5). Such a large creative
jump would have been time-consuming to manually program.

Ash inspects the generated output and finds it interesting, so
she decides to continue with this new direction. She creates a new
— modify → operator and begins to write a new prompt: “Add 10
more planets, and decrease the distance.” To help Ash with her explo-
ration, Spellburst provides inspiration through an auto-complete
drop-down (Figure 5 b), which suggests three additional ideas: “Add
rings to some of the planets,” “Add moons to the solar system,” and
“Decrease the planet sizes.” She hadn’t thought about adding rings,
but she likes the idea and selects this auto-complete option resulting
in a new sketch node (Figure 3 Sketch 6).

Later, Ash returns to the original sketch and explores two entirely
different concepts: one related to Perlin noise and topographic maps
(Figure 3 Sketches 7,9,10,11) and another related to color gradients
(Figure 3 Sketch 8). These are depicted as two additional branches
from the initial sketch node. Ash uses the prompts “Imagine the

sketch is a topographic map. Use Perlin noise to make each circle
appear like a mountain range with peaks and valleys from a top-
down topographic map” to produce Sketch 7 and “Good, increase the
number of circles for a more complex mountain range” for Sketch 9.

4.3.1 Iterating on generated outputs through code editing. By look-
ing at the output for the topographic maps, Ash is not quite satisfied
with Sketch 9. In this instance, prompt-based refinement can be
tedious. Therefore, Ash decides to iterate directly on the code on a
more granular level. As before, she clicks on the ‘show code’ button
to open up a code editor view of Sketch 9. Spellburst automatically
provides code comments for the prompt-generated code. She clicks
on the ‘maximize’ button to focus the interface and zoom in on
just that node (similar to Figure 1 c). She manually updates the
values for the spacing parameter to create a denser arrangement,
which instantly updates the output view. Once Ash is satisfied
with this version, she zooms back out to the canvas, and adds a
— duplicate → operator to make a copy of Sketch 9 so she can
manually edit the code; she creates Sketch 10 this way.

4.3.2 Iterating on prompts using Semantic and Global Variable Slid-
ers. To provide fine control over the prompt phases or propositions,
Spellburst has auto-generated various sliders for global variables

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

present in the code: circleSize, numCircles, and noiseStrength.
Further, she notices that Spellburst has automatically mapped rel-
evant words and phrases from the original modification prompt
to these variables, allowing her to adjust the relative influence of
words in the prompt and see changes to the sketch in real-time
(Figure 5 c). Ash plays around with both of the sliders, producing
Sketch 11. These dynamic prompt-driven sliders, in addition to our
non-deterministic autocomplete, allow Spellburst branches to eas-
ily enable quick exploration of extremely divergent creative paths.
Such affordances highlight Spellburst’s capacities for iteration and
“accident-driven development” unlike platforms like Fork It.

4.4 Merging Nodes and Extracting Properties
As Ash iterates on her project, she realizes that she wants to com-
bine visual aspects from two previous sketches along two different
branches. However, manually merging code from different sketches
can be time-consuming. Instead, Ash uses Spellburst’s — merge →
feature to select Sketch 6 and Sketch 11 for merging (Figure 5
d). She does not provide any natural language input; moments
later, Sketch 12 appears on screen. When Ash inspects the code for
Sketch 12 in the code editor, she finds the following code comment,
which is a natural language description of how the two sketches
were merged: “Combine the planet system from [Code Snippet 1]
with the mountain range background from [Code Snippet 2] which
produces Sketch 12. The resulting sketch shows a planet system
with a mountain range background that updates in real-time and is
generated using Perlin noise."

In addition to merging sketches, Ash can use the prompt inter-
face to extract specific sketch attributes as a new sketch (different
from duplicating the entire sketch). For instance, Ash uses the —
extraction → opreator to isolate the color gradient from Sketch 8.
She’s not sure where she plans to use it, but she wants to keep it
readily accessible. In a different step in the exploration workflow,
Ash can take a step back from the work as is and look at differences
between the wide variety of sketches currently on the canvas. She
takes the latest output from Sketch 11 and creates a new — diff →
operator to see a natural language summary of how Sketch 11 has
changed from Sketch 10, as well as the differences between the
sketches at a code level. She can then use this summary as input
for future modifications.

Ash notices that Spellburst will occasionally generate code that
does not run or code that conflicts with her expectations. Whenever
this happens, Ash has two options: (1) step into the code editor to
debug the code manually or (2) delete the node and regenerate the
result. She does this various times throughout her session, pruning
and growing her branches with ease. While the zoomable canvas
gives her a “birds-eye view” similar to other node/canvas UIs, our
structured auto-layout removes the need to “clean up” the canvas
and makes it immediately clear how a sketch has progressed over
time because it is a direct visualization of the version history tree.
We also chose to focus on auto-layout so that artists would be
focused on iteration rather than organizing their canvas, which
was based on cognitive load concerns in our formative study.

Throughout her work with Spellburst, Ash benefits from the
seamless integration of syntax and semantics, the intuitive Node
View, and the powerful natural language interface. The system’s

features enable her to focus on her artistic intentions and iterate
on her generative art project with greater ease and control. By the
end of this session, Ash has only begun her creative journey. She
has successfully explored various corners of the design space, as
sampled in Figure 3.

5 SPELLBURST
The core of Spellburst’s implementation focuses on chaining to-
gether API calls to OpenAI [54] to generate p5.js sketches. This
involves dynamically composing the prompt context based on man-
ually written code, AI-generated code, previous prompts, and exist-
ing operator node data. Here we describe the prompt engineering
approach for the key functionalities of Spellburst and provide de-
tails about our system implementation. The full set of prompts used
in Spellburst are provided in the appendix (section A.2).

5.1 Prompt Design
To design the prompts, we iteratively explored a combination of
prompting strategies based on a trial-and-error approach, using
visual output as our guide. Unlike most LLM-powered coding assis-
tants that mostly automate coding for one-off tasks, our prompts
are intended to be “bridges” between p5.js source code and their
visual outputs.

5.1.1 Code Generation. When first experimenting with prompting
GPT-3.5 to output p5.js code, we used simple one-sentence ques-
tions (e.g., “Draw a p5.js code snippet that shows. . . ”). However,
we found that the model provided either code that did not work
or output that did not align with our expectations. To address this
shortcoming, we employed few-shot prompting. Few-shot prompt-
ing is derived from the technique of few-shot learning, where a
model is trained on several related tasks in order to generalize well
on new tasks with just a few examples [11]. This technique incorpo-
rates several examples of desired input and output examples within
the prompt to steer the model’s output in the right direction. Our
examples consisted of both simple code snippets (e.g., a circle and
a square on a screen) to more complex code snippets that allowed
our model to decode abstract concepts (e.g., balls that bounce off
the walls of the edges of the canvas). Below is a snippet of one of
the examples we provided within our few-shot prompts:

Prompt: add a bunch more balls and make them bounce off the bounds

Output:
let numCircles = 20;
// Create an empty array to store the circles
let circles = [];
// Set up the canvas and create the circles
function setup() {

createCanvas (700, 410);
...

After using few-shot prompting, we wanted to integrate the
model’s outputs within the Spellburst system. To create usable out-
put, we forced the model to provide its answer using a specific
template and syntax. At a high-level, templates are an effective
prompting strategy, as they filter LLM output to eliminate choices
that would have been unhelpful to the user [82]. For instance, our

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

prompts contained start and end tokens as well as extra instruc-
tions to make sure the code compiled and rendered correctly (e.g.,
limiting calls to the draw() function to ensure animation outputs
render correctly). Getting LLMs to generate structured data con-
sistently is an open research effort, with projects like jsonformer
[66] or grammar-based sampling [22] allowing users to specify
output schemas. However, we used the following restrictions in our
prompt to guide the output:

Restrictions:
- Only respond with code in your output as a raw string.
- Be as efficient as possible with your implementations.

When producing computationally intensive sketches ,
try to use optimization methods so they run more
quickly.

- If you are ever asked to apply an animation , remember
to always remove any calls of the noLoop function to
make sure it actually animates.

- Comment your code with useful comments.
- Remember to be as efficient as possible with your

implementations. When producing computationally
intensive sketches , try to use optimization methods
so they run more quickly.

Finally, we ran into specific problems that were unique to our
use case of creative coding. While the use of natural language
queries was helpful in making large jumps within the semantic
space, the lack of the model’s explanation made it difficult to make
more granular syntactic edits. To make the model output more
explainable to users seeking finer control, we experimented with
prompting the model to write code comments. We embedded these
code comments within our few-shot prompts, outlining the purpose
of every couple of lines. In this way, the code blocks served as chain-
of-thought prompts, encouraging the model to think “step-by-step”
to decompose hard tasks into smaller steps [10].

5.1.2 Prompt Auto-complete. Prompt authoring tools are currently
underpowered and often involve simply typing into inputs without
any form of auto-complete or facilitation for future direction. Un-
like auto-complete for structured data like a programming language
– where the system can easily match the input with a pre-existing
set of options – natural language input can have multiple inter-
pretations. Thus, it can be difficult to determine what the “correct”
completion is, especially for creative text-generation tasks. Because
of this ambiguity, we focused the Spellburst auto-complete on pro-
viding non-deterministic options to suggest interesting directions
to take a prompt. Supporting exploration, rather than just “task
execution” or search, is also important. By presenting a range of
possible suggestions, auto-complete can encourage users to think
more deeply about their search and discover new information that
they may not have otherwise considered. The goal here is breaking
past creative barriers and novelty.

With these design decisions in mind, we implemented prompt
auto-complete by querying ChatGPT, again by using few-shot
prompting to make the API simulate being an auto-complete engine.
For context, we fed in the connected sketch to extract relevant key-
words from (1) the current prompt being typed and (2) 5 examples
of input-output prompt completion pairs.

5.1.3 Semantic Parameter Adjustment. Semantic parameters allow
users to adjust sketches at the concept and prompt level, rather
than needing to search for exactly which variables to manipulate in
the source code. Our primary implementation method involves (1)
extracting out key phrases from the input prompt, (2) generating a
"semantic map" between these phrases and related global variable
names, and (3) generating the desired code from the initial prompt
and the semantic map with another API call. We found success by
telling the LLM up-front to first name the global variables it would
declare in relation to keywords in the prompt. This method mimics
the data you might get from an attention “heatmap” between the
input prompt and the output code, which is currently not possible
to obtain due to the closed-source nature of OpenAI’s LLMs.

5.1.4 Merging Operations. Our implementation of merging is dif-
ferent from traditional merging algorithms. Existing methods, such
as the three-way merge used in Git, try to combine code contents
line-by-line without producing syntax errors. On the other hand,
Spellburst’s merge functionality is LLM-powered, meaning that it
tries to combine code contents in a semantically meaningful way.
For example, it may take the physics behavior from a bouncing ball
simulation and “merge” the color palette from an unrelated abstract
art sketch. We call this process semantic merging.

To implement semantic merging, we used few-shot prompting
to provide examples of expected outputs, a template and syntax to
integrate the model’s response within Spellburst, and code com-
ments to make the code explainable. One area we intend to explore
more involves what a few-shot prompt example could look like. In
some tests, we simply juxtaposed two p5.js sketches next to each
other. For other tests, our merges were larger semantic jumps that
would be hard to achieve by merely directly combining the two
code snippets together. An example of one of our merging prompts
can be found in A.2.

5.1.5 Developing a Taxonomy for Creative Coding Transformations.
Finally, to align the natural language queries from users and the
expected output from ChatGPT, we developed a taxonomy that
classified different aspects of creative coding transformations. This
taxonomy was developed by examining a variety of artistic tax-
onomies and adapting them to the context of creative coding. We
organized the taxonomy into three main categories of transforma-
tion:

(1) Apply Transformation to Objects / Primitives / Marks: This cat-
egory deals with the individual elements or building blocks
used in creative coding projects. These include properties
such as color, shape, form, texture, thickness, waviness, curvi-
ness, and randomness*.

(2) Apply Transformation in Relation to the Plane/Canvas: This
category addresses how the elements in a creative coding
project are transformed concerning the overall composition
or canvas. Properties in this category include size, direc-
tion/orientation*, alignment*, white space*, movement, noisi-
ness, symmetry*, scale/proportion*, hierarchy*, and random-
ness*.

(3) Apply Transformation to the Relationship Between Objects:
This category focuses on the relationships between elements
in a creative coding project and how they can be transformed.

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

Properties in this category include nesting, direction/orien-
tation*, repetition/pattern, proximity/spacing, alignment*,
white space*, symmetry, contrast/emphasis, variety, balance,
scale/proportion*, hierarchy*, unity, depths/layers, and ran-
domness*.

Asterisks indicate properties that appear in two categories, il-
lustrating the interconnectedness of these properties in creative
coding transformations.

With this taxonomy, we searched and reviewed over 40 examples
of creative coding work and labeled them according to this catego-
rization. Subsequently, we wrote a code snippet corresponding to a
change a participant could suggest in alignment with the taxonomy.
Lastly, we crowd-sourced natural language queries that could be
used to describe the transformation of the code from its original
state to the state we coded. A curated number of crowd-sourced
responses were then used as seed data to generate the few-shot
examples for the ChatGPT API calls. Details on the crowd-sourced
survey can be found in A.3.

5.2 Implementation Details
5.2.1 User Interface: The frontend of Spellburst is built using a
combination of React [49], Reactflow [80], Jotai [34], and d3.js [8].
React is the foundation for our user interfaces, while Jotai allows
us to store and manage the state of the graph’s nodes and edges. For
visualization, we used Reactflow to build the node-based interface
for exploring variations through branching and merging, while
d3.js is used to manage the hierarchical tree visualization and
auto-layout of the graph.

Because the canvas involves constantly runningmultiple sketches
at the same time – each of which with the ability to individually
pause, play, and reset – we run each sketch in a separate iframe.
To make the editing experience fast and responsive, we reload a
sketch’s iframe on every keystroke inside of the code editor. The
most important quality of this automatic reloading is making sure
the system is reactive and users can instantly respond to any visual
feedback, which is important for discovering unexpected properties
or behavior in sketches.

5.2.2 Backend and Language Model API:. The Spellburst backend is
built using Node.js [18] and Express.js [28] and uses OpenAI’s
ChatGPT [54] API for all language model functions, specifically
the gpt-3.5-turbo model. The backend has several routes for
modifying, merging, extracting, and auto-completing code, each
dynamically generated based on the input.

5.2.3 Spellburst Graph: Each node and edge in the graph is rep-
resented as a JSON object. The properties of the respective JSON
schemas help define the position, source code, and connections to
other nodes on the graph. An example of the JSON objects for both
components can be found in A.1. All operations on the graph are
immutable by default, meaning that all modifications and adjust-
ments to source code result in the creation of new nodes rather
than overwriting the input. This immutable structure allows users
to easily view the causal dependencies between operations and how
sketches progress over time.

Whenever an operator node is re-run but is already connected to
existing sketches, the connected sketches will automatically update

with the new code. Regenerated code only affects immediately
connected sketches/edges one layer deep, so “out of date” code
needs to be re-run one layer at a time. When a node is deleted
from a graph, its descendants will remain in the graph. However,
the descendants will be reattached to the deleted node’s parent
node. Although this method does not preserve the original causal
structure of the graph, it facilitates visualization of the overall
progression of how the initial sketch diverged over time.

6 EXPERT EVALUATION
In our evaluation, we aimed to determine whether artists are able to
engage in exploratory creative coding using Spellburst. Concretely,
we gathered feedback on Spellburst’s support for (1) bridging se-
mantic and syntactic spaces while creative coding through natural
language prompting, (2) control over creative coding across large
and small code increments, and (3) the usability and cognitive load
while using Spellburst.

6.1 Method
We conducted a user study via Zoom with 11 expert creative coders.
We recruited participants by contacting generative artists in our
professional network and through social media messaging. One
participant was a repeat participant from the formative study. Each
session lasted approximately 75 minutes, and participants received
$30 for the time. Participants’ demographic information can be
found in the appendix (section A.6).

In each session, participants were given a walkthrough tuto-
rial of Spellburst’s key features and asked to complete a practice
creative coding task. Once participants indicated familiarity with
Spellburst, they proceeded to work on a set of creative coding tasks
that required performing small changes to an initial starter code
using prompts or direct code editing (e.g., tweaking the color of
the circles in the sketch, four tasks total), executing large creative
shifts using prompts (e.g., proposing an iteration that is a significant
departure from the current code, four tasks total), and open-ended
creative exploration using Spellburst’s feature for 15 minutes. The
juxtaposition of small and big changes maps to syntactic and se-
mantic changes, respectively. By designing our two tasks like this,
we wanted to formalize the system’s ability to allow people to move
between abstraction levels. Participants completed distinct tasks in
each category using Spellburst and their typical IDE alongside Chat-
GPT [54]. We ran this as a within-subject comparison study, and
the order of tool use was randomized. At the end of the study, each
participant completed the NASA-TLX cognitive load questionnaire,
a usability questionnaire, and finally participated in a 15-minute
long open-ended discussion.

6.2 Findings
Using the snapshot of the canvas at the end of each user’s run –
encompassing the nodes, edges, and their types – we created a
visualization of artists’ exploration. The resulting visualization in
Figure 6 shows distinct patterns of creative explorations for several
participants in Spellburst, and appendix A.4 shows screenshots
of Spellburst from two participants. Across tasks and open-ended
exploration, participants engaged in rapid iteration, which ranged

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

from fine-grained editing to large semantic changes. Expansive pat-
terns of divergent thinking were encouraged through Spellburst’s
affordances with multiple creative pathways emerging from the
root node. This can be especially seen for P6 in the upper left por-
tion of Figure 6 which involved 10 different modifications from the
root node, and P8, who merged after creating numerous variations.
Spellburst can support different variations of depth and breadth in
exploration, allowing users to easily explore a new area if they find
that one line of iteration is no longer relevant.

Further, our analysis shows three types of creative exploration:
(1) Branching and Variations: For some, the optimal way to use

Spellburst was to create numerous branches off of the root
node and then perform numerous modifications and merges
from each branch. On the other hand, other participants
found it beneficial to make either one or a few branches from
the root node, perform a small number of modifications, and
then create even more branches from those.

(2) Modify Nodes as Terminal Nodes: While the majority of the
terminal nodes are menu nodes – indicating sketches – a
good number are also modifying nodes, with prompts to
create variations that were ultimately unexplored.

(3) Merging after Several Modifications: Merging often occurs
after several modifications of a branch of changes. As a result,
users often prefer to explore the possibilities within branches
before merging two together, as opposed to merging together
after smaller changes.

6.2.1 Prompt Based Editing. Across all sessions, participants re-
sponded positively to using prompts to initiate larger creative shifts.
Although many expressed that it was their first time using LLM
prompts in creative coding work, 73% agreed or strongly agreed that
they liked using Spellburst’s interface and 90% agreed or strongly
agreed that it was easy to learn to use the system (Figure 8). Ac-
cording to P7, when executing larger shifts, they don’t necessarily
have a clear mapping to algorithms and attributes in the code. In-
stead, natural language is more expressive in communicating their
creative intent: “it matches to my expectations better on some of the
conceptually large changes in the sense that I like didn’t have to be as
precise. . . ” (P7) Similarly, P11 commented: “I felt a better immediate
response with the larger conceptual changes, just because you could at
least get some of the feelings that I was trying to capture. ” In general,
participants responded positively to the generated code outputs.
As P6 commented about making a rainbow effect:“This is exactly
what I envisioned when I said, Make a rainbow. So that’s pretty cool.
That’s close.”

For smaller syntactic variations, participants had mixed opinions
about using prompts. For example, P1 found the prompt-based
interactions less useful when they already had a clear idea: “I don’t
really see this being good for when I have an idea of what I want. It
seems way more frustrating to try to chat with it to give me what
I want versus coding it myself.” However, P9 commented about
the prompt affordances that Spellburst allowed them to do things
they would typically avoid: “[with Spellburst] I found myself doing
things that I wouldn’t normally do because for-loops are kind of
a drag for me. . . but with Spellburst I was like, Oh, I don’t have
to write out all that syntax for these for-loops.” P2 commented
that syntactic prompts could, in fact, make creative coding more

accessible to non-coders. These varied experiences suggest that
the balance between semantic and syntactic prompting should be
carefully considered in designing future systems like Spellburst.

When using prompts to generate code outputs, participants
found the AI auto-complete suggestions beneficial in providing
ideas. According to P10: “I did find some inspiration in the sugges-
tion. . . It took me down some paths that I didn’t really think I was
gonna go down, and I always appreciate that like opportunity. so
I can almost imagine like a little clippy-style AI . . . here’s a weird
thing you could try with this output like just giving me ideas for
where to go next.” However, several participants expressed the need
for interpretability of the generative outputs. P5 commented:“I think
the main thing I would want is more interpretability, like perhaps
[currently] a little bit too much magic." and “I find myself wanting
to be able to turn each part [of the prompt] on and off to figure out
which part is contributing to which."

The primary error encountered with Spellburst was related to
bugs in the generated code that would either prevent that specific
output from running or produce output that was far from the partic-
ipant’s expectations. To address errors associated with AI generated
code, we do allow artists to directly access the code editor. In cases
where generated code did not run, the errors were isolated to one
path, which participants typically addressed by trying again with
a different prompt or going into the code editor. Several partici-
pants were eager to spend more time figuring out the generated
errors in the code. However, the limited duration of the sessions
served as a constraint. Future research could explore the trade-offs
associated with using generated AI code that may be error-prone
and require time and effort on manual bug-fixing modifications.
P10 expressed how errors encountered through prompt generation
could disrupt creative flow as it puts them in a “weird, intermediate
space between image and code.”

6.2.2 Comparison of Spellburst with ChatGPT baseline. Based on
feedback from using both Spellburst and their typical IDE alongside
ChatGPT, a majority of artists found the visual interface, sketch
organization, and branching features of Spellburst to be key factors
that make it preferable when compared to ChatGPT. For example, P1
appreciated the branching capability of Spellburst, which enabled
rapid creative exploration in comparison to a more linear process
with ChatGPT: “I think being able to go between the different branches
was really interesting to me. . .modifying on a specific sketch that I
see, like seeing the way that was laid out was really cool.” Similarly,
P9 commented how the visual iterations in Spellburst felt like a
different process compared to ChatGPT and their regular IDE:

“. . . after the experience of using the raw ChatGPT ver-
sion, I really did come to appreciate the sort of ease with
which you could reason about the different versions, and
very precisely sort of branch and duplicate and not have
it be ambiguous sort of which one you were basic off
of and sort of explore. The ChatGPT version felt very
linear, whereas this one seemed to very much encour-
age branching exploration and making that sort of a
first-class part of it. So that was cool.” (P9)

P8 even expressed how Spellburst could accelerate their cre-
ativity: “I was going faster with the new interface for sure able
to explore way more ideas per minute." However, in contrast, P4

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

Generating numerous branches from the root

Creating variations, then branching

Prompt nodes as terminal nodes

Merging after
numerous
variations

Key:
Menu Sketch Modify Merge

P6

P5

P3 P5

P6 P8

Figure 6: Abstract node visualizations of the canvas. The collated examples showcase the key affordances and behaviors
associated with Spellburst.

mentioned reduced friction when using ChatGPT due to greater
familiarity: “The ChatGPT interface is somewhat known to me. so I
feel there is slightly less friction going in there [versus Spellburst].”

6.2.3 Usability of Spellburst’s Interface. Immediately following the
evaluation study, we asked participants to complete both NASA
Task Load Index (NASA-TLX) [25] and the Post-Study System Us-
ability Questionnaire [42]. In the NASA-TLX survey results, par-
ticipants found Spellburst to be the most mentally demanding
(𝑚𝑒𝑎𝑛 = 9.9, 𝑆𝐷 = 4.8). On the other hand, they found it to be
the least physically demanding (𝑚𝑒𝑎𝑛 = 2.6, 𝑆𝐷 = 1.2). There
was notable variation in participants’ experiences in terms of suc-
cess in accomplishing what they were asked to do with Spellburst
(𝑚𝑒𝑎𝑛 = 11.4, 𝑆𝐷 = 5.2), as well as mental demand (𝑚𝑒𝑎𝑛 = 9.9,
𝑆𝐷 = 4.8) and stress with Spellburst (𝑚𝑒𝑎𝑛 = 7.1, 𝑆𝐷 = 4.4).

In the PSSUQ survey results, we found the overall usability score
for Spellburst as 7.67. In terms of sub-scales, the System Useful-
ness (SYSUSE) score was 8.26 which indicates that the system was
relatively easy to use and learn. The Information Quality (INFO-
QUAL) score was 6.76, which suggests that while the information
provided by the system was helpful, there is from for improvement
in areas such as error messages, documentation, and information
organization. The Interface Quality (INTERQUAL) score was 8.24,
which indicates that participants found the system’s interface to be
pleasant and visually appealing. Combined, these results indicate
that Spellburst has a good level of usability, but some aspects, par-
ticularly information quality, could be further improved to enhance
the user experience.

Participants appreciated Spellburst’s visual branching and merg-
ing without having to engage with Git-style commands. Many of
the participants did not typically engage with Git for version con-
trol and appreciated how Spellburst could help seamlessly organize

their projects without too much overload, with P7 sharing how it
can address their pitfall of focusing too much on organizing: “I find
that anytime I get excited about trying to organize the creative project.
All the excitement goes into the organizing.” Further, P10 appreciated
the automatic branching functionality and the automatic rendering
of the code, feeling that “this would work really well for me across
my P5 sketches.” The visual version control mechanics of Spellburst
also served to reduce creative fiction for P8: “You don’t have to be
scared that you’re going to lose a pretty state.”

Participants also discussed the potential for Spellburst to impact
their workflow as P7 shares: “Maybe we do have something that’s
maintained in a Git repository, and [Spellburst] is like a sandbox
for me to change small pieces of code and see how it impacts the
entire project.” To spur rapid iteration and creative exploration, P6
took advantage of running multiple prompts simultaneously and
received an unanticipated benefit from the delay time associated
with AI code generation: “It means you can start off ideas and not be
influenced by the output of the first one when you’re thinking about
the second one . . . this gives you time to continue thinking of ways to
remix the previous ones without being influenced.”

However, some expressed a desire for bookmarking nodes or
a way to clear unrelated content and focus on a specific branch
without visual overload, as expressed by P8: “I want to just clear
the stage and look at this one. . . otherwise it can be too much mind
clutter.” The ability to zoom in and out at different levels of detail
and give the user control over both output and focus space in the
UI are considerations for future development.

6.2.4 Perceptions of impact on their creative practice. Participants
expressed interest in a tool like this to support broader exploration
and ideation in earlier stages of projects. Almost all found the tool
beneficial for fast prototyping, with P1 likening the experience

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

0

5

10

15

20

How mentally
demanding was the
task with Spellburst?

How physically
demanding was the
task with Spellburst?

How hurried or
rushed was the pace

of the task with
Spellburst?

How successful
were you in

accomplishing what
you were asked to do

with Spellburst?

How hard did you
have to work to

accomplish your
level of performance

with Spellburst?

How insecure,
discouraged,

irritated, stressed,
and annoyed were

you with Spellburst?

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

Figure 7: Participant Responses to the NASA-TLX Cognitive Load Questionnaire

Overall, I am satisfied with how easy it is to use the system
It was simple to use this system.

I was able to complete the tasks and scenarios quickly using this system.
I felt comfortable using this system.

It was easy to learn to use this system.
I believe I could become productive quickly using this system.

The system gave error messages that clearly told me how to fix the problems.
Whenever I made a mistake using the system, I could recover easily and quickly.

The information (such as online help, on-screen messages, and other documentation) provided with the
It was easy to find the information I needed.

The information was effective in helping me complete the tasks and scenarios.
The organization of information on the system screens was clear.

The interface of this system was pleasant.
I liked using the interface of this system.

This system has all the functions and capabilities I expect it to have.
Overall, I am satisfied with this system.

0% 25% 50% 75% 100%

Strongly disagree

Disagree

Somewhat disagree

Neither agree nor disagree

Somewhat agree

Agree

Strongly agree

Figure 8: Participant Responses to Post-Study System Usability Questionnaire (PSSUQ)

“. . . as a practice like the same way you doodle on a napkin". While
several participants felt that the generated code typically did not
map exactly to their expected output, it was perceived to help
with ideation, with Spellburst uniquely designed to support visual
navigation across different iterations. P9, who had limited prior
experience using prompts to create code, noted how Spellburst
encouraged her to “. . . reflect about the way I was thinking about code
. . . normally when I teach coding we’re giving very specific instructions
to the computer. But now I’m giving less specific, more abstracted
instructions . . . and in this case they don’t need to be very specific [in
order to be successful]."

However, some concerns were also raised about the responsi-
ble and ethical development and use of systems like Spellburst
that leverage large language models with data trained from large
amounts of information on the internet. This remains an open area
of discussion, and the experts that we interviewed had conflicting
views about artists’ rights to ownership, ranging from concern
about plagiarizing to issues of ownership in art being historically
muddy; for example, artists who lead teams of assistants may nomi-
nally take ownership of work that is actually much more collabora-
tive. Specifically, some participants were troubled by the possibility
of accidental plagiarism and a desire to give credit to prior artists,
with P1 stating “I use other people’s code a lot, but it’s always credited,

and I try to be very clear about that in my sketches at the top [with
comments acknowledging] that I’ve taken from others". Perceptions
of this did vary by individual, with P5 sharing that “I would be more
concerned about copying somebody else’s visual style and less about
copying the exact implementation of it." P9 expressed concern about
1) bias in training sets “I’d be curious to see how it responds to race
and gender" 2) potential lack of understanding amidst the layers
of abstraction “. . . there’s less of a feeling that you have a grasp of
what’s going on.", and 3) skepticism toward AI tools developed by
companies solely driven by profit “seeing some of them built on top
of p5 feels like, Oh man, we were really trying to build a tool embedded
around access and inclusion and they’re being wrapped by various
layers. I would just question, what’s being prioritized in those tools?"

These perceptions tie back to prior research that shows how
AI obscures key parts of the creative process that artists would
have otherwise wanted to customize or understand [43] and that
large languagemodels can regurgitate copyrightedmaterial without
correct attribution [27], resulting in lawsuits about artists’ work
being included as training data for LLMs without their consent
[78]. Given the ethical and legal risks at hand, future work on
Spellburst should require that LLMs provide proper citation of the
source. This would also benefit users seeking more granularity and

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

explainability; they would be able to follow the original source and
see more inspiration from real artists.

As some of our participants noted in the evaluation study, AI
models carry inherent biases regarding race, gender, and other so-
cial constructs [5]. When artists prompt our system to interpret
natural language phrases such as “make this sketch more feminine”
or “make this sketch more aggressive,” social biases embedded in
the model may be expressed in code or AI-generated descriptions
of the code, as P9 demonstrated in her user study. As this field de-
velops, we must attend to and contribute to the discussions around
the responsible and ethical use of generative AI. Until then, we
recognize and support the agency of each artist to decide whether
or not to use AI-augmented CSTs such as Spellburst.

7 DISCUSSION
7.1 Utility of Spellburst
In addition to the workflow for expert creative coders described
in Section 4, Spellburst can support a broader range of tasks for
creativity and learning. We briefly describe a set of use cases to
demonstrate the broader utility of Spellburst.

7.1.1 Learning Version Control for Creative Coding Novices. Ver-
sion control management and creative coding involve techniques
and tools that take time to learn. While this study focused primarily
on expert usage, many participants commented on the playfulness
of Spellburst as an exciting entry point for beginners. Spellburst
could be adapted to help novices explore the full design space. This
is especially important as novices lack the exposure to semantic
constructs that they prefer (patterns, styles, forms) as well as syn-
tactic constructs that they may employ (functions, parameters). As
a result, they may get stuck more easily on either side of the divide.
For example, a learner who is experimenting with trigonometric
functions in p5.js for the first time may not know all possible ef-
fects of varying the parameter range. They will also not be able to
map a commonly desired effect to the commonly used parameter
range of −𝜋/4 to 𝜋/4 radians. With Spellburst, a learner is free to
cycle through many ideas without getting prematurely fixed in one
corner of the design space or getting stuck while attempting to
produce one desired effect. In addition, Spellburst provides learners
with an intuitive interface for version control that allows them to
save, reflect on, and debug their creative process.

7.1.2 Debugging. The structure of Spellburst as a node-based ver-
sion control system also lends itself to supporting the practice of
debugging for novices and experts alike. For example, imagine a
user attempting to debug a complex p5.js sketch for a recursive
fractal. If the current sketch is not working, a user can duplicate
the existing sketch, inspect the code, and incrementally adjust the
code until the bug is resolved. Then, they can merge the code back
into the main branch. This can all be done with AI support via the
natural language prompt interface.

7.1.3 Sharing and Documenting Work. We learned from our partic-
ipants that creative coders often share and document their work for
others, even when they work alone. Some of our study participants
explained that they post screenshots of work-in-progress on social
media networks to solicit feedback from peers. Others document

their process and code to be disseminated and “donated” to a public
audience for remixing [70]. Imagine an artist who wants feedback
on a new pendulum system they created using Spellburst. They
post a link to their own Spellburst instance for everyone to see.
A peer opens up the link and finds an intuitive and interactive
account of the artist’s process. The peer sees the artist’s original
intent in natural language with each prompt that was used; they
also inspect the code that resulted at each step. The peer happens
to prefer an earlier iteration rather than the latest sketch; because
Spellburst preserves the non-linear nature of the work, the peer is
able to easily discover it and point this out to the artist. A beginner
who follows this artist on social media also receives the link. They
are interested in how this artist created the pendulum; instead of
scanning the workflow as the peer did, the beginner traces the
artist’s process step-by-step to build their understanding of what
the artist did.

7.2 Limitations and Future Work
While our evaluation studywith generative artists provides valuable
insights into Spellburst’s effectiveness, there are some limitations
to consider, all of which open up avenues for future work.

Section 6.2 surfaced various limitations of our system related to
unusable code, interface unfamiliarity, and cognitive load. Design-
ing effective interfaces for handling generative AI errors remains
an important need in future work. Unexpected results were espe-
cially common during merge operations. This is partly related to
our design choice to favor ease of semantic merging over control:
On one hand, the unexpected results led to playful or serendipitous
discovery, especially during large creative jumps. On the other, our
design limited users’ creative control when executing small, precise
creative jumps. Future work could consider designs that strike a
balance between exploration and control in merge operations, for
example, by optionally allowing the user to explicitly specify and
manipulate emphasis of aspects of interest from each input.

Further, while we made an attempt to demystify the output
from various LLMs, our evaluation results indicate that it is hard
to predict which prompts would be “effective” in generating de-
sired variations. As a result, there is still no perfect mapping from
semantic to syntactic changes, which could frustrate users who
would otherwise get a lot from the platform. Initial future work
could include further fine-tuning the model on examples using our
taxonomy. Likewise, we could leverage other work done to make
for better prompting experiences, including features to help add
constraints to the generation process [30] as well as leveraging the
strengths of the chat-based interface to find common ground [20]
[65]. Future work should also investigate multi-modal prompting
that can build referential connections between the visual canvas
and text-based prompts.

Third, our study only explored a limited set of interactions with
Spellburst. The 10 expert creative coders who participated in the
evaluation are not representative of the richly diverse population
of creative coders and artists. Future studies should involve larger
samples with a wider range of backgrounds to better understand
the system’s performance and utility. In addition, the tasks used in
our evaluation did not cover all possible scenarios and use cases
that creative coders might encounter. Exploring additional tasks,

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

particularly “medium-sized” jumps that are neither too drastic nor
too minor, would provide a more comprehensive understanding of
Spellburst’s affordances at various stages of the creative process
(D6). Future work should investigate the effects of long-term, in-situ
use on creative practice and the extent to which users can adapt
to and benefit from the system over time and in the context of
real-world artistic workflows. To support more nodes and edges,
we may want to consider new approaches to scale the performance
and usability of the interface.

Finally, large-scale creative work often requires an entire studio
of artists and producers. For example, consider a game develop-
ment team that is building a new underwater scene. Two game
developers might need to explore many approaches for rendering
the currents. They might start from the same sketch and create
completely different interactive graphics. When they sit down to
discuss, the developers realize that they appreciate the color scheme
in one sketch but prefer the physic simulations of the second sketch.
Future work should explore such collaborative use of Spellburst.

8 CONCLUSION
In this work, we present Spellburst, a creativity support tool de-
signed to expand creative outputs for artists working with code.
The node-based canvas integrates the act of creative exploration
and tracking exploration history to reduce the burden on artists
and enhance multiple creative strategies, including combinatorial
and transformative creativity. Spellburst employs a large language
model informed by crowdsourced data to support semantic and
syntactic editing and exploration. Spellburst achieves a balance
between larger creative shifts using prompts and fine-grained con-
trol through dynamic interfaces between prompt and code and
direct code editing. Our evaluation with expert generative artists
demonstrates that Spellburst enhances creative practice through
rapid exploration while reducing the overhead of managing the
exploration process.

ACKNOWLEDGMENTS
We are grateful to the reviewers and our study participants for their
time and helpful feedback. We also thank Abdallah AbuHashem,
Maxwell Bigman, Professor John Mitchell, Licia He, and Barron
Webster for their input during the early iterations of this project.

REFERENCES
[1] 2021. GitHub Copilot. https://marketplace.visualstudio.com/items?itemName=

GitHub.copilot
[2] Adobe. 2023. Adobe Firefly. https://www.adobe.com/sensei/generative-ai/firefly.

html
[3] ATLAS.ti. 2023. ATLAS.ti. https://atlasti.com/atlas-ti-web
[4] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2022. Grounded

Copilot: How Programmers Interact with Code-Generating Models.
arXiv:2206.15000 [cs.HC]

[5] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models Be
Too Big?. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency (Virtual Event, Canada) (FAccT ’21). Association for Comput-
ing Machinery, New York, NY, USA, 610–623. https://doi.org/10.1145/3442188.
3445922

[6] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 25–29. https://doi.org/10.1109/VLHCC.2017.8103446

[7] Margaret A Boden. 2010. Creativity and art: Three roads to surprise. Oxford
University Press.

[8] Mike Bostock. 2023. d3.js. https://d3js.org/
[9] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.

Qualitative research in psychology 3, 2 (2006), 77–101.
[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models Are Few-Shot Learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook,
NY, USA, Article 159, 25 pages.

[12] Cameron Burgess, Dan Lockton, Maayan Albert, and Daniel Cardoso Llach.
2020. Stamper: An Artboard-Oriented Creative Coding Environment. In Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI EA ’20). Association for Computing Machinery, New
York, NY, USA, 1–9. https://doi.org/10.1145/3334480.3382994

[13] Minsuk Chang, Stefania Druga, Alex Fiannaca, Pedro Vergani, Chinmay Kulkarni,
Carrie Cai, andMichael Terry. 2023. The Prompt Artists. arXiv:2303.12253 [cs.HC]

[14] Bangor School Department. 2012. G/T Student Questionnaire.
https://www.bangorschools.net/wp-content/uploads/2012/09/GT-Art-
Screening-Questionnaire-Student1.pdf

[15] Derivative. 2023. Touch Designer. https://derivative.ca/
[16] George Fifield. 2011. Drawing with Code: Works from the Anne and Michael

Spalter Collection.
[17] Charles Forceville. 2008. Metaphor in pictures and multimodal representations.

The Cambridge handbook of metaphor and thought (2008), 462–482.
[18] OpenJS Foundation. 2023. Node.js. https://nodejs.org/en
[19] Jonas Frich, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose

Biskjaer, and Peter Dalsgaard. 2019. Mapping the landscape of creativity support
tools in HCI. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–18.

[20] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal
Chechik, and Daniel Cohen-Or. 2022. An Image isWorth OneWord: Personalizing
Text-to-Image Generation using Textual Inversion. arXiv:2208.01618 [cs.CV]

[21] Berys Gaut. 2003. Creativity and imagination. The creation of art (2003), 148–173.
[22] Georgi Gerganov. 2022. Llama : add grammar-based sampling. https://github.

com/ggerganov/llama.cpp/pull/1773
[23] Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual pro-

gramming environments: a ‘cognitive dimensions’ framework. Journal of Visual
Languages & Computing 7, 2 (1996), 131–174.

[24] Stephen Halliwell. 2009. The aesthetics of mimesis. In The Aesthetics of Mimesis.
Princeton University Press.

[25] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[26] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer.
2008. Design as exploration: creating interface alternatives through parallel
authoring and runtime tuning. In Proceedings of the 21st annual ACM symposium
on User interface software and technology. 91–100.

[27] Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A.
Lemley, and Percy Liang. 2023. Foundation Models and Fair Use.
arXiv:2303.15715 [cs.CY]

[28] TJ Holowaychuk. 2023. Express.js. https://expressjs.com/
[29] Lingdong Huang. 2022. Srcsnap: Screenshot-driven version tracking. https:

//github.com/LingDong-/srcsnap
[30] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2018.

Image-to-Image Translation with Conditional Adversarial Networks.
arXiv:1611.07004 [cs.CV]

[31] Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending
manual drawing practices with artist-centric programming tools. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. 1–13.

[32] Jennifer Jacobs, Sumit Gogia, Radomír Mĕch, and Joel R Brandt. 2017. Supporting
expressive procedural art creation through direct manipulation. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems. 6330–6341.

https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://www.adobe.com/sensei/generative-ai/firefly.html
https://www.adobe.com/sensei/generative-ai/firefly.html
https://atlasti.com/atlas-ti-web
https://arxiv.org/abs/2206.15000
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1109/VLHCC.2017.8103446
https://d3js.org/
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3334480.3382994
https://arxiv.org/abs/2303.12253
https://www.bangorschools.net/wp-content/uploads/2012/09/GT-Art-Screening-Questionnaire-Student1.pdf
https://www.bangorschools.net/wp-content/uploads/2012/09/GT-Art-Screening-Questionnaire-Student1.pdf
https://derivative.ca/
https://nodejs.org/en
https://arxiv.org/abs/2208.01618
https://github.com/ggerganov/llama.cpp/pull/1773
https://github.com/ggerganov/llama.cpp/pull/1773
https://arxiv.org/abs/2303.15715
https://expressjs.com/
https://github.com/LingDong-/srcsnap
https://github.com/LingDong-/srcsnap
https://arxiv.org/abs/1611.07004

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

[33] Vanita Jain, Piyush Agrawal, Subham Banga, Rishabh Kapoor, and Shashwat
Gulyani. 2019. Sketch2Code: transformation of sketches to UI in real-time using
deep neural network. arXiv preprint arXiv:1910.08930 (2019).

[34] Daishi Kato. 2023. Jotai. https://jotai.org/
[35] Mary Beth Kery. 2021. Designing Effective History Support for Exploratory

Programming Data Work. (2021).
[36] Mary Beth Kery, Amber Horvath, and Brad A Myers. 2017. Variolite: Supporting

Exploratory Programming by Data Scientists.. In CHI, Vol. 10. 3025453–3025626.
[37] Kevin Gonyop Kim, Richard Lee Davis, Alessia Eletta Coppi, Alberto Cattaneo,

and Pierre Dillenbourg. 2022. Mixplorer: Scaffolding Design Space Exploration
through Genetic Recombination of Multiple Peoples’ Designs to Support Novices’
Creativity. In CHI Conference on Human Factors in Computing Systems. 1–13.

[38] Kevin Gonyop Kim, Richard Lee Davis, Alessia Eletta Coppi, Alberto Catta-
neo, and Pierre Dillenbourg. 2022. Mixplorer: Scaffolding Design Space Explo-
ration through Genetic Recombination of Multiple Peoples’ Designs to Sup-
port Novices’ Creativity. In Proceedings of the 2022 CHI Conference on Hu-
man Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 308, 13 pages.
https://doi.org/10.1145/3491102.3501854

[39] Oded M Kleinmintz, Tal Ivancovsky, and Simone G Shamay-Tsoory. 2019. The
two-fold model of creativity: the neural underpinnings of the generation and
evaluation of creative ideas. Current Opinion in Behavioral Sciences 27 (2019),
131–138.

[40] Aaron D Knochel and Ryan M Patton. 2015. If art education then critical digital
making: Computational thinking and creative code. Studies in Art Education 57,
1 (2015), 21–38.

[41] Chinmay Kulkarni, Stefania Druga, Minsuk Chang, Alex Fiannaca, Carrie Cai,
and Michael Terry. 2023. A Word is Worth a Thousand Pictures: Prompts as AI
Design Material. arXiv:2303.12647 [cs.HC]

[42] James R Lewis. 1992. Psychometric evaluation of the post-study system usability
questionnaire: The PSSUQ. In Proceedings of the human factors society annual
meeting, Vol. 36. Sage Publications Sage CA: Los Angeles, CA, 1259–1260.

[43] Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From
Visual Artists About Software Development. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. 1–14.

[44] Zach Lieberman, Theodore Watson, Arturo Castro, et al. 2009. Openframeworks.
URL http://openframeworks. cc/about (2009).

[45] Vivian Liu and Lydia B Chilton. 2022. Design Guidelines for Prompt Engineering
Text-to-Image Generative Models. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22).
Association for Computing Machinery, New York, NY, USA, Article 384, 23 pages.
https://doi.org/10.1145/3491102.3501825

[46] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1–15.

[47] Lauren McCarthy. 2023. p5*js. https://p5js.org/
[48] Lauren McCarthy, Casey Reas, and Ben Fry. 2015. Getting started with P5. js:

Making interactive graphics in JavaScript and processing. Maker Media, Inc.
[49] Meta. 2023. React. https://react.dev/
[50] Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi. 2017. Micro-Versioning

Tool to Support Experimentation in Exploratory Programming. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (Denver,
Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY,
USA, 6208–6219. https://doi.org/10.1145/3025453.3025597

[51] HusseinMozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2022. Reading
Between the Lines: Modeling User Behavior and Costs in AI-Assisted Program-
ming. arXiv:2210.14306 [cs.SE]

[52] Brad A Myers. 1990. Taxonomies of visual programming and program visualiza-
tion. Journal of Visual Languages & Computing 1, 1 (1990), 97–123.

[53] Bernard A Nijstad, Wolfgang Stroebe, and Hein FM Lodewijkx. 2002. Cognitive
stimulation and interference in groups: Exposure effects in an idea generation
task. Journal of experimental social psychology 38, 6 (2002), 535–544.

[54] OpenAI. 2023. ChatGPT. https://chat.openai.com/
[55] OpenAI. 2023. Dall·E 2. https://openai.com/product/dall-e-2
[56] Fatih Kursat Ozenc, Miso Kim, John Zimmerman, Stephen Oney, and Brad Myers.

2010. How to Support Designers in Getting Hold of the Immaterial Material of
Software. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery,
New York, NY, USA, 2513–2522. https://doi.org/10.1145/1753326.1753707

[57] Stefan Palan and Christian Schitter. 2018. Prolific.ac—A subject pool for online
experiments. Journal of Behavioral and Experimental Finance 17 (2018), 22–27.

https://doi.org/10.1016/j.jbef.2017.12.004
[58] Kylie Peppler and Yasmin Kafai. 2005. Creative coding: Programming for personal

expression. Retrieved August 30, 2008 (2005), 314.
[59] Anna L. Phillips. 2011. The Algorists. American Scientist 99, 2 (Mar

2011), 126. https://www.proquest.com/scholarly-journals/algorists/docview/
878896671/se-2 Copyright - Copyright Sigma XI-The Scientific Research Soci-
ety Mar/Apr 2011; Document feature - Photographs; Last updated - 2017-11-18;
CODEN - AMSCAC.

[60] The Creators Project. 2012. How to Draw With Code | Case Reas.
[61] Eric Rawn, Jingyi Li, Eric Paulos, and Sarah Chasins. 2023. Understanding Version

Control as Material Interaction with Quickpose. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems.

[62] Casey Reas, Ben Fry, and John Maeda. 2007. Processing: A Programming Handbook
for Visual Designers and Artists. The MIT Press.

[63] Replit. 2022. Ghostwriter - code faster with AI. https://replit.com/site/ghostwriter
[64] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. 2021. High-Resolution Image Synthesis with Latent Diffusion Models.
arXiv:2112.10752 [cs.CV]

[65] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and
Kfir Aberman. 2022. DreamBooth: Fine Tuning Text-to-image Diffusion Models
for Subject-Driven Generation. (2022).

[66] Rahul Sengottuvelu. 2023. Jsonformer: A Bulletproof Way to Generate Structured
JSON from Language Models. https://github.com/1rgs/jsonformer

[67] Paul Shen. 2023. natto.dev. https://natto.dev/
[68] Daniel Shiffman, Shannon Fry, and Zannah Marsh. 2012. The nature of code. D.

Shiffman.
[69] Evan Shimizu, Matthew Fisher, Sylvain Paris, James McCann, and Kayvon Fa-

tahalian. 2020. Design Adjectives: A Framework for Interactive Model-Guided
Exploration of Parameterized Design Spaces. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 261–278.

[70] Ben Shneiderman. 2002. Creativity support tools. Commun. ACM 45, 10 (2002),
116–120.

[71] Ben Shneiderman. 2007. Creativity support tools: accelerating discovery and
innovation. Commun. ACM 50, 12 (2007), 20–32.

[72] Sarah Sterman, Molly Jane Nicholas, and Eric Paulos. 2022. Towards Creative
Version Control. In CM Conference on Computer-Supported Cooperative Work and
Social Computing.

[73] Anselm Strauss and Juliet Corbin. 1990. Basics of qualitative research. Sage
publications.

[74] Kesler Tanner, Naomi Johnson, and James A. Landay. 2019. Poirot: A Web
Inspector for Designers. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3290605.3300758

[75] Michael Tempel. 2017. Generative art for all. Journal of Innovation and En-
trepreneurship 6, 1 (2017), 1–14.

[76] Mark Turner. 2006. The artful mind: Cognitive science and the riddle of human
creativity. Oxford University Press.

[77] Bret Victor. 2012. Learnable Programming : designing a programming
system for understanding programs. (2012). http://worrydream.com/
LearnableProgramming/

[78] James Vincent. 2023. AI art tools Stable Diffusion and Midjour-
ney targeted with copyright lawsuit. The Verge (Jan 2023). https:
//www.theverge.com/2023/1/16/23557098/generative-ai-art-copyright-legal-
lawsuit-stable-diffusion-midjourney-deviantart

[79] Adrian Ward and Geoff Cox. 1999. How I Drew One of My Pictures: or, The
Authorship of Generative Art. In International Conference on Generative Art.
Generative Design Lab Milan.

[80] webkid. 2023. Reactflow. https://reactflow.dev/
[81] Nathaniel Weinman, Steven M. Drucker, Titus Barik, and Robert DeLine. 2021.

Fork It: Supporting Stateful Alternatives in Computational Notebooks. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 307, 12 pages. https://doi.org/10.1145/3411764.3445527

[82] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
arXiv:2302.11382 [cs.SE]

[83] Loutfouz Zaman, Wolfgang Stuerzlinger, Christian Neugebauer, Rob Woodbury,
Maher Elkhaldi, Naghmi Shireen, and Michael Terry. 2015. Gem-ni: A system for
creating and managing alternatives in generative design. In Proceedings of the
33rd annual ACM conference on human factors in computing systems. 1201–1210.

https://jotai.org/
https://doi.org/10.1145/3491102.3501854
https://arxiv.org/abs/2303.12647
https://doi.org/10.1145/3491102.3501825
https://p5js.org/
https://react.dev/
https://doi.org/10.1145/3025453.3025597
https://arxiv.org/abs/2210.14306
https://chat.openai.com/
https://openai.com/product/dall-e-2
https://doi.org/10.1145/1753326.1753707
https://doi.org/10.1016/j.jbef.2017.12.004
https://www.proquest.com/scholarly-journals/algorists/docview/878896671/se-2
https://www.proquest.com/scholarly-journals/algorists/docview/878896671/se-2
https://replit.com/site/ghostwriter
https://arxiv.org/abs/2112.10752
https://github.com/1rgs/jsonformer
https://natto.dev/
https://doi.org/10.1145/3290605.3300758
https://doi.org/10.1145/3290605.3300758
http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/
https://www.theverge.com/2023/1/16/23557098/generative-ai-art-copyright-legal-lawsuit-stable-diffusion-midjourney-deviantart
https://www.theverge.com/2023/1/16/23557098/generative-ai-art-copyright-legal-lawsuit-stable-diffusion-midjourney-deviantart
https://www.theverge.com/2023/1/16/23557098/generative-ai-art-copyright-legal-lawsuit-stable-diffusion-midjourney-deviantart
https://reactflow.dev/
https://doi.org/10.1145/3411764.3445527
https://arxiv.org/abs/2302.11382

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

A APPENDIX
A.1 JSON Schemas for Graph Data
Below is an example of the JSON schema for a node.

{
"width": 300,
"height": 324,
"id": "wgtt0s",
"type": "sketch",
"data": {

"sourceNode": "root",
"sourceCode": "\nfunction setup() {\n
createCanvas (400, 400);\n background (255);\n
strokeWeight (2);\n stroke (0);\n}\n\nfunction

draw()
{\n\n}\n ",
"size": {

"width": 300,
"height": 300

}
},
"position": {

"x": 0,
"y": 0

},
"sourcePosition": "right",
"targetPosition": "left",
"selected": false ,
"positionAbsolute": {

"x": 0,
"y": 0

}
}

Below is an example of a JSON object for an edge:

{
"id": "wgtt0s=>ic45uc",
"source": "wgtt0s",
"target": "ic45uc",
"type": "connected",
"selected": false

}

A.2 Prompts for LLMs
Below are the prompts we fed into the ChatGPT API to perform
each of Spellburst’s core operators. The ChatGPT API takes in an
array of messages in the request body following this order: [System
Configuration, Dynamic Context, User Input]. The System
Configuration is a preset preamble for each route based on the
task at hand (modification, merging, etc.). The Dynamic Context is
a series of user and assistantmessages to demonstrate examples
of the kinds of output each route should output, where the assistant
is primarily tasked with outputting code (rather than responding
with natural language chat). The last user example that’s sent is
formatted in the same way as the previous, generated user messages
in the dynamic context, and the final response that the user sees as
the sketch is generated is a final assistant output.

With these details inmind, we provide the System Configuration
and Dynamic Context for reproducibility.

A.2.1 Restrictions. For each prompt, we append a set of restrictions.
These restrictions helped structure ChatGPT’s return values and
also addressed common issues that occurred during experimenta-
tion. The string of these restrictions is defined as @BASE_RESTRICTIONS,
and is defined in future prompts.

Restrictions:
- Only respond with code in your output as a raw string.
- Be as efficient as possible with your implementations.
When producing computationally intensive sketches, try
to use optimization methods so they run more quickly.
- If you are ever asked to apply an animation, remember
to always remove any calls of the noLoop function to
make sure it actually animates.
- Comment your code with useful comments.
- Remember to be as efficient as possible with your
implementations. When producing computationally intensive
sketches, try to use optimization methods so they run
more quickly.

A.2.2 Modification. The System Configuration prompt is:
You are a creative coding software engineer focused on
creating visually stunning graphics, physics simulations,
biological simulations, and data visualizations using
p5.js. You are excellent at a few things: creating
p5.js sketches, modifying p5.js sketches with natural
language prompts, and blending multiple sketches together
by merging their code in semantically meaningful ways.

@BASE_RESTRICTIONS

The Dynamic Context is:

const VARIATION_CONTEXT = [
{

"role": "user",
"content": JSON.stringify ({

code: `let x = 100;
let y = 100;
function setup() {

createCanvas (700, 410);
};
function draw() {

background (0);
fill (255);
rect(x, y, 50, 50);

};
};`,

variationPrompt: "add a bunch more balls and make
them bounce off the bounds"

})
},
{

"role": "assistant",
"content": `//${START_TOKEN}

let numCircles = 20;
// Create an empty array to store the circles
let circles = [];
// Set up the canvas and create the circles
function setup() {

createCanvas (700, 410);
for (let i = 0; i < numCircles; i++) {

circles.push({
// randomly set the x and y coordinates of each

circle within the canvas
x: Math.floor(Math.random () * 700),
y: Math.floor(Math.random () * 410),
// set the radius of each circle
radius: 10,
// set the x and y velocity of each circle to a

random value between 0 and 0.5
xVel: Math.random () * 0.5,
yVel: Math.random () * 0.5,

});

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

}
};
function draw() {

background (0);
// loop through each circle in the array and move it

according to its velocity
for (let i = 0; i < circles.length; i++) {

let cir = circles[i];
cir.x += cir.xVel;
cir.y += cir.yVel;

// if a circle reaches the edge of the canvas ,
reverse its direction

if (cir.x >= width || cir.x <= 0) {
cir.xVel *= -1;

}
if (cir.y >= height || cir.y <= 0) {

cir.yVel *= -1;
}

// set the fill color to white and draw the circle at
its current position

fill (255);
ellipse(cir.x, cir.y, cir.radius);

}
};
//${END_TOKEN}`

}
]

A.2.3 Merging. The System Configuration prompt is:
Given two p5.js code snippets, generate a new code
snippet that combines the functionality of both snippets.
The output code snippet should be valid p5.js code
and should have as much similarity as possible to the
original inputs.

First, you’ll begin your generation by creating a "merge
prompt". This can either be supplied by the user, otherwise
you will create it.

It should follow this format: "Combine [Feature A]
from [Code Snippet 1] with [Feature B] from [Code
Snippet 2]. The resulting code should [Describe desired
functionality]."

In this format, you would fill in the placeholders with
the relevant information for your specific merge prompt.
For example: /̀*Combine the animation loop from Code
Snippet 1 with the mouse-interactivity of Code Snippet
2. The resulting code should draw a looped animation
that responds to user mouse movement by changing its
direction and speed in real-time.*/`

Then you’ll produce the relevant p5 code according to
the prompt and the format provided in the following
examples.

@BASE_RESTRICTIONS
- Remember to include the merge prompt inside of code
comments.

The Dynamic Context is:

const exampleInput = {

firstCode: `let angle = 0;
let r = 100;
function setup() {

createCanvas (400, 400);
background (220);

}
function draw() {

translate(width / 2, height / 2);
rotate(angle);
strokeWeight (2);
stroke (0);
line(0, 0, r, 0);
angle += 0.05;

}
`,

secondCode: `let x, y;
let speed = 3;
function setup() {

createCanvas (400, 400);
x = width / 2;
y = height / 2;

}
function draw() {

background (220);
ellipse(x, y, 50, 50);
x += speed;
if (x > width || x < 0) {

speed *= -1;
}

}`
}

const exampleOutput = `//${START_TOKEN}
/* Combine the rotating line animation from Snippet 1

with the bouncing ball behavior from Snippet 2. The
resulting code should draw a rotating line that

bounces off the walls of the canvas and leaves a
trail of dots or other shapes */

let angle = 0;
let r = 100;
let x, y;
let speed = 3;
function setup() {

createCanvas (400, 400);
x = width / 2;
y = height / 2;
background (220);

}
function draw() {

translate(width / 2, height / 2);
rotate(angle);
strokeWeight (2);
stroke (0);
line(r, 0, x - width / 2, y - height / 2);
angle += 0.05;
ellipse(x, y, 5, 5);
x += speed;
if (x > width || x < 0) {

speed *= -1;
}
y = height / 2 + sin(x * 0.02) * 100;

}
//${END_TOKEN}
`

const MERGE_CONTEXT = [
{

role: "user",
content: JSON.stringify(exampleInput)

},
{

role: "assistant",
content: exampleOutput

}
]

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

A.2.4 Autocomplete. The System Configuration prompt is:
Your role is to provide autocomplete results for a
natural language prompt-editor for creating p5.js sketches.

If the input prompt is an incomplete sentence, provide
results that continue the sentence. If the input prompt
is a complete sentence, provide more complete sentences.

You will *always* provide results or suggestions, even
if the input seems incomplete.

Provide maximum 3 (three) suggestion results. Do not
respond with any english. You are not a chat. You are
simply returning arrays of data.

The Dynamic Context is:

const AUTOCOMPLETE_CONTEXT = [
{

"role": "user",
"content": "make an intricate tree with branches that

twist and turn , gradually tapering off into
smaller and smaller branches."

},
{

"role": "assistant",
"content": "[\"add variation in color and thickness

to branches \",\" randomize branch angles and
lengths \",\" incorporate falling leaves or
flowers \"]"

},
{

"role": "user",
"content": "make it more"

},
{

"role": "assistant",
"content": "[\" colorful\", \" sporadic and physical\",

\"like a surreal drawing \"]"
},
{

"role": "user",
"content": "draw numerous small particles"

},
{

"role": "assistant",
"content": "[\" that are attracted to each other with

a gravity well \",\" that respond to user input to
change particle behavior \",\" that collide with

each other \"]"
},
{

"role": "user",
"content": "create an abstract and "

},
{

"role": "assistant",
"content": "[\" visually striking piece of art using

perlin noise .\",\" experiment with color
gradients and blending modes \",\" incorporate
user input for dynamic patterns \"]"

},
]

A.2.5 Extraction. The System Configuration prompt is:
You are the most experienced creative coding assistant
in the world who is focused on creating visually stunning
graphics, physics simulations, biological simulations,
and data visualizations using p5.js. You can help answer

coding questions, write code, and change code. Specifically,
you are excellent at answering questions about p5.js
sketches.

You have read countless articles about building interactive
art and graphics, and have read everything from the
p5.js API documentation (https://p5js.org/reference/),
as well as all of the "Nature of Code" articles and
tutorials (https://natureofcode.com/book/).

A.2.6 Diffing. The System Configuration prompt is: You are
the most experienced creative coding assistant in the
world who is focused on creating visually stunning
graphics, physics simulations, biological simulations,
and data visualizations using p5.js.

You have read countless articles about building interactive
art and graphics, and have read everything from the
p5.js API documentation (https://p5js.org/reference/),
as well as all of the "Nature of Code" articles and
tutorials (https://natureofcode.com/book/).

Compare the two pieces of p5.js code. In no more than 5
sentences, describe how they are similar and different.
Focus on the content of each sketch, their properties
(such as color and stroke), and code-level differences.
Don’t propose a function.

A.3 Crowd-sourcing Image Transformations
A.3.1 Design of Survey. After developing our taxonomy, coding
the examples, and selecting the top 20 representative examples,
we recruited participants from the Prolific platform [57], targeting
adult (18+), English first language speakers with sufficient art expe-
rience from the USA and with access to a desktop computer. The
initial set of age, location, and language constraints narrowed the
eligible pool of participants from roughly 120,000 to 37,000. With
this participant pool in mind, we implemented a pre-screening
questionnaire in Prolific to assess the participants’ art experience
and self-perceptions in relation to art. The questions were inspired
from a gifted and talented art screening questionnaire [14]. A total
of 370 participants completed the initial pre-screen survey.

We then invited the eligible participants to complete a series
of crowdsourced tasks, each of which involved them providing a
natural language prompt to transform an image from one state to
the next. The tasks were designed to only elicit participants’ natural
language descriptions, without exposing them to the underlying
code.

Each task included an initial starter image output of a creative
coding project and a final image (see Figure 9 for an example).
Participants were asked to provide a prompt that they believed
would sufficiently describe the transformation from the starter
image to the final image. Incomplete and timed out crowdsourced
tasks were flagged by Prolific and discarded. In total, we collected
12 prompts for each of the 20 images with input from 52 unique
participants on at least one prompt.

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

Figure 9: Example crowdsourced task

We categorized the crowd-sourced responses into three broad
categories: semantic descriptions (“make it look like an iceberg
melting""), syntactic descriptions (“increase the stroke weight of the
lines”), and combined semantic and syntactic descriptions (“randomly
vary the thickness like tree branches”). We found that a common
pattern for successful combined semantic and syntactic descriptions
involved reference to a taxonomy term as well as reference to a
simile or metaphor.

A.3.2 Example Prompts. Here are some example prompts from the
survey:

• With the circle image, create a finale image that has many
circles echoing and rippling out all around it. As the shapes
ripples out, the shades fade out in greyscale until they’re almost
invisible. They distorted and change shape and are no longer
perfect circles. To achieve this, lower the images levels by 30%.
Then multiple the original circle layer and lower the levels 5%
more on the new layer. With the new circle layer than distort
and manipulate it’s shape. Repeat these steps again, and again,
until dozes of distorted shapes are echoing out from the original
circle layer.

• Take the different sides of the line of the provided image (circle)
and use the tool to stretch the line in and out making a sort of
wave effect around the whole circle. Then copy this line over
itself many times at different points either farther inside the
original circle line or farther outside the original circle line.

• instead of a circle, it would look like multiple pencil lines over-
lapping to create an organic looking shape.

• You will need to add a bunch of lines to image 1. You will need
to draw an irregular circle multiple times.

• I would open it up so that it is no longer a circle and make
it look more vibrant and less fluid. It will have a distressed
quality and will look a little frayed. It will have blurred lines
that will overlap one another. It won’t be a closed circle and
will be a lot larger. The blackness will also be a little more like
a grey color.

A.4 Example Spellburst Evaluation Output

Spellburst: Creative Coding with LLMs UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 10: Evaluation study sketch from P6 indicating encompassing several variations on concentric circles starter code.

Figure 11: Evaluation study sketch from P8 indicating the user’s generation of a provisional UI in the form of sliders to support
their creative exploration.

A.5 System Architecture

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Angert et al.

Figure 12: System architecture of Spellburst, showing the connection between the front-end Canvas and the server that calls
the ChatGPT API.

A.6 Demographic Information of Participants

Gender Experience Background Tools
(Years)

U1 M 5+ Creative Coding p5.js, Python
Educator

U2 F 5+ Generative Artist Javascript,
Python

U3 F 5+ Generative Artist Javascript
p5.js

U4 M 3-5 Visual Designer Adobe, Figma
React.js

U5 M 5+ Software Engineer Javascript
U6 M 5+ Software Engineer Javascript,

HTML, CSS
U7 M 5+ Game Developer Unreal

Engine
U8 F 5+ Visual Designer Figma,

SVG Art
U9 M 5+ Generative Artist Javascript
U10 M 5+ Generative Artist Javascript
Table 1: Generative Study Participants Demographics

Gender Experience Background Tools
(Years)

P1 F 2.5 Generative Artist C++,
Javascript

P2 M 10-11 UI Designer, HTML, CSS
Creative Coder Javascript

P3 M 10-15 Software Engineer p5.js,
3D Modeling

P4 M 4 HCI Researcher Sketch-n-
Sketch

P5 M 6 Creative Coder LED and
Video Art

P6 M 5-6 Generative Artist, HTML, CSS,
Software Engineer p5.js

P7 M 8-10 Digital Artist, Python,
Data Scientist Blender

P8 M 5 Creative Coder, Processing,
College Student Python

P9 F 15+ Creative Coder, Swift, Java,
Open Source Creator HTML, CSS

P10 M 10 Visual Designer HTML, CSS,
3D Modeling

P11 F 4 Creative Coder p5.js,
Unity (C#)

Table 2: Expert Evaluation Participants Demographics

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tracking Exploration History
	2.2 Support for Expressive Programming
	2.3 AI Augmentation for Creative Tasks

	3 Formative Interviews with Experts
	3.1 Method
	3.2 Findings and Design Considerations

	4 User Experience
	4.1 Set-up
	4.2 Focused Exploration
	4.3 Exploring Large Creative Jumps
	4.4 Merging Nodes and Extracting Properties

	5 Spellburst
	5.1 Prompt Design
	5.2 Implementation Details

	6 Expert Evaluation
	6.1 Method
	6.2 Findings

	7 Discussion
	7.1 Utility of Spellburst
	7.2 Limitations and Future Work

	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 JSON Schemas for Graph Data
	A.2 Prompts for LLMs
	A.3 Crowd-sourcing Image Transformations
	A.4 Example Spellburst Evaluation Output
	A.5 System Architecture
	A.6 Demographic Information of Participants

