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Figure 1: A designer conducting data-driven brainstorming using Composites: (a) the designer creates sticky notes for potential
information to show on a smart watch display; (b) To explore how to present weather data, the designer adds the weather
dataset (orange) sticky note to Composites’s work surface. In response, Composites projects available attributes in the dataset;
(c) The designer constructs a bar chart with month on the 𝑥-axis and precipitation along the 𝑦-axis using Composites’s spatial
grammar, and the resulting visualization is projected onto the wall. (d) the designer captures the visualization in a new (green)
sticky note and moves it to the cluster of brainstorming notes.

ABSTRACT
Conventional tools for visual analytics emphasize a linear produc-
tion workflow and lack organic “work surfaces.” A better surface
would simultaneously support collaborative visualization construc-
tion, data and design exploration, and reasoning. To facilitate data-
driven design within existing design tools such as card sorting, we
introduce Composites, a tangible, augmented reality interface for
constructing visualizations on large surfaces. In response to the
placement of physical sticky-notes, Composites projects visualiza-
tions and data onto large surfaces. Our spatial grammar allows
the designer to flexibly construct visualizations through the use
of the notes. Similar to affinity-diagramming, the designer can
“connect” the physical notes to data, operations, and visualizations
which can then be re-arranged based on creative needs. We develop
mechanisms (sticky interactions, visual hinting, etc.) to provide guid-
ing feedback to the end-user. By leveraging low-cost technology,
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1 INTRODUCTION
Data insights are helpful in design thinking and creative problem-
solving tasks (e.g., brainstorming design features for an ambient
display, deliberating COVID-19 policy changes, or solving a cy-
bercrime). However, generating and incorporating data insights in
creative practices can be a source of friction. For instance, imag-
ine designing an ambient smartwatch display (e.g., the Siri Watch
face [2]). In a brainstorming session, the designer (or a software
team) create “sticky notes” on a wall about various contextual in-
formation that the display can show during the course of a day
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(see Figure 1 a). To define rules about whether, when, and how
to present the information (e.g., such as alerting the possibility
of rain), the designer may want to know the frequency of rain in
different geographic regions. Unfortunately, conventional visual
data analysis tools (e.g., Tableau [47] or Jupyter Notebook [23])
don’t smoothly integrate into a design workflow or work surface.

The graphical user interface (GUI) format of visual analysis tools
contradicts the tangible and organic “work surfaces” typical in
design practice (e.g., whiteboard, tangible sticky notes, etc.). A data-
driven design approach will require pausing the design activity to
switch work surfaces (e.g., to a desktop interface) and later transfer
insights back to the design work surface. Conducting data analysis
before brainstorming can be limiting as new possibilities, questions,
and design choices may emerge during the generative design pro-
cess. Furthermore, many existing visual analysis tools implement
a linear workflow: one visualization leading to an insight leading
to another visualization. While effective for rapid construction of
individual visualizations, such tools make finding, modifying, com-
bining, and grouping previous analytical units (e.g., visualizations)
difficult. This is essential to higher-level sensemaking and reason-
ing about design. Large wall-size displays could potentially address
these issues but are costly and inaccessible to a large number of
users. Augmented reality (AR) environments such as projection-
based or head-mounted displays are relatively inexpensive, but do
not support the same range of interactions as their touch-screen
counterparts, and gestural interactions may be problematic (e.g.,
gorilla-arm effect [18]). Ideally, designers should maintain their ex-
isting work surfaces while seamlessly executing data-related tasks.

In this work, we explore a tangible interaction paradigm,Compos-
ites, to support data work in the context of existing design practice
(e.g., affinity diagramming, card sorting, whiteboard-based concept
maps etc.). Though the system can be adapted to AR or touch-screen
environments, we focus on a ‘low-cost’ version. Composites com-
bines a projector, a camera, and low-cost sticky notes to implement a
tangible user interface (TUI). To support analysis, Composites offers
a ‘grammar’ for producing visualizations by placing sticky notes.
As shown in Figure 1b, the designer can access the weather dataset
within the design work surface by placing the orange dataset sticky
note on the wall. By reading the ArUco marker [32] on the dataset
note, Composites projects corresponding data attributes (columns)
on the work surface. The designer can ‘bind’ tangible sticky notes
to individual data attributes and construct visualizations using our
spatial grammar. In Figure 1c, the designer creates a bar chart of
precipitation (𝑦−𝑎𝑥𝑖𝑠) across different months of the year (𝑥 −𝑎𝑥𝑖𝑠)
and ‘binding’ the resulting visualization to a new green sticky note.
Where the note is moved, the visualization follows (Figure 1d).

In building Composites, we specifically address the challenge
of maintaining a large work surface that supports creative design
tasks and the construction and modification of visualizations (Fig-
ure 1). The designer can create, duplicate, modify, name, move, and
group visualizations by simply writing on, and moving, physical
notes (as opposed to a pointer, touch, or mid-air interactions). Crit-
ically, Composites allows higher-order sensemaking and reasoning
by taking advantage of spatial cognition and spatial memory. In
data-driven design using Composites, the designer can seamlessly
generate and test their hypotheses about the data, fold data insights
into their design context, and deliberate about design choices using

data. Our approach is scalable, supports collaboration and sharing
as visualizations persist throughout the design activity.

Our key contributions include (1) a novel approach to large-
screen visual analytics using near-range, direct manipulation in-
teractions on non-touchscreen displays, (2) a spatial visualization
grammar for TUIs, and (3) a set of mixed-reality interactions to
connect physical tokens with on-screen information.

2 RELATEDWORK
In Composites we build on prior work in the domains of visual
analytics, visual programming languages, and tangible interaction
techniques. We are specifically interested in how those approaches
support large-surface views, flexible arrangement of visualizations,
and the integrated ability to modify/create visualizations.

2.1 Visualization Tools
Many commercial visualization and visual analytics tools (e.g.,
Tableau, Excel, etc.) are optimized for mouse and keyboard interac-
tions but do not lend well to direct manipulation interactions on
large displays (fixed tab-based views and layouts, window man-
agement problem [37] etc). Research systems [8, 20, 40, 51] have
provided ways of extending work surfaces in various ways. For
example, ExPlates [20] continuously creates new visualizations
on a large virtual display. The analyst can pan and zoom to see
the provenance of visualizations and to get a sense of the ana-
lytics pipeline. While the placement of visualizations is largely
constrained in ExPlates to a grid, Sandbox [51] supports arbitrary
placement of information (i.e., “put-that-there” spatial cognition),
and uses process model templates for analytical tasks. However,
because it supports clipping from numerous applications, functions
for visual analytics are not built into the tool.

While pan-and-zoom interactions provide access to large vir-
tual surfaces, large physical displays can better support multiple
views (data, navigation,and knowledge views), support greater data
dimensionality, show multiple simultaneous visualizations with
more data-details, and also provide a larger workspace for collab-
oration and sensemaking [1]. Dataspace, for instance, couples 15
high resolution displays with AR and VR for visual data analysis [5].
Unfortunately, it is not possible to directly translate existing design
and visualization tools into this mode of operation due to their de-
pendency on mouse and keyboard. Furthermore, when interacting
on a large screen display–beyond a certain “tipping-point”–is it
desirable to trade virtual navigation for physical affordances. This
requires new design considerations that leverage the extent of hu-
man abilities (whole-body interaction, spatial cognition etc.) rather
than solve for display medium’s technological limitations [1].

We are specifically interested in large displays to support the
comparison of multiple visualizations. Alternatives include small
multiples, and snap-together visualizations (e.g., [34]) which pro-
vide simultaneous views for comparison purposes. Uplift is a system
for data exploration between diverse stakeholders which combines
3D models with tangible interactions, AR, and mid-air data visual-
ization to support collaborative tasks [9]. MADE-Axis [40] provides
a wireless ‘composable’ controller with actuated sliders for visual
analytics inmixed-reality interfaces. Interactivity (e.g., linked brush-
ing), extend the ability to coordinate and compare across views.



Composites: A Tangible Interaction Paradigm for Visual Data Analysis in Design Practice AVI 2022, June 6–10, 2022, Frascati, Rome, Italy

Gleicher et al. propose a general taxonomy of visual designs for
comparison that groups designs into three basic categories: jux-
taposition (e.g., two time series side-by-side), superposition (e.g.
multiple time series in the same plot), and explicit encodings (e.g.,
a time series showing the difference between the original two) [13].
Different language constructs in Composites can produce these
views either by inferring likely intent or through explicit construc-
tion. Thus not only can we support arrangement of individual
visualizations so they can be positioned near each other, but also
intelligently combine grouped views to enhance comparisons.

2.2 Visual Programming Languages
In Composites we take a visual querying approach similar to past
work using interactive, visual querying of relational data [31, 33, 35,
42]. However, traditional approaches in this space require mouse
and keyboard interactions to construct the “query.” In contrast,
in visual programming languages (VPLs) queries are constructed
through alternative graphical metaphors. While such languages
have not traditionally focused on visualization, we can adapt them.
VPLs are inherently spatial, and the relative positioning of prim-
itives corresponds to relationships between those primitives or
groups of primitives [14]. In Composites we use a spatial syntax to
author and embed visualizations. This reduction in the gap (spatial,
temporal, and conceptual) between visualization construction UI
and the actual visualization is beneficial as it provides tight integra-
tion between action and feedback [15]. With Composites we utilize
a consistent language, centered around the movable sticky notes,
for creation, modification, viewing, and arranging.

2.3 Interaction Techniques
Two lines of research in interaction techniques relate to Composites:
how visualizations can be viewed, navigated, or manipulated by
the end-user, and how the system supports complex tasks.

Interaction with large surfaces has often focused on navigation.
Solutions have ranged from body-centric gestures for control of
map visualizations [39] to the use of tangible props ( [6, 21]) such as
a cube with three perpendicular rods that can be pushed or pulled
along the three axes in order to explore 3D visualizations [10]. Vi-
sual analytics, however, is about more than navigation which is why
direct-manipulation techniques are more natural for interacting
with visual information, in that they minimize the distance be-
tween intent and execution of the intent [7, 38, 43]. In TouchVis[7],
Drucker et al. conducted a comparison study between traditional
desktop interfaces and FLUID (touch) interfaces, and report that
touch interactions were better suited for analytic tasks as they lay
emphasis on the task than on the interface. Visfer implements a
camera based solution for cross device visualization transfer [4].
Marvis combines head-mounted AR displays with mobile devices
to support visual analytic tasks [26].

Direct manipulation techniques for interacting with visualiza-
tions outside of a standard desktop environment have included
pen and touch [27], as well as custom [11, 36, 40], and non-custom
tangible tokens [12, 19, 22, 24]. The former two (pen/touch and
custom tokens) are often highly expensive. Custom tokens, in par-
ticular, call for fabrication and engineering effort to add function-
ality prior to use in analysis. This can be problematic for visual

data analysis as one cannot anticipate query and analysis needs
beforehand. Non-custom tokens are often less powerful than pen
and tokens with integrated electronics, but can nonetheless support
sophisticated interactions. The DigiPost system uses physical post-
it notes to issue commands for editing documents (e.g. rename, save,
etc.) [22]. Post-Post-it offers a spatial-ideation system using novel
VR interactions modeled after physical sticky notes [29]. Other
work-surfaces such as Dynamic Land [48] and Affinity Lens [44]
use paper based tangible interfaces coupled with an augmented
reality display. While Affinity Lens is intended for data augmented
affinity diagramming (a design task), it does not support visualiza-
tion construction. Composites builds on these ideas to form a more
complete visual analytics framework.

Because the visual language of Composites is broad, we overlay
digital content on top of the sticky-notes to facilitate the analysis
process. To support seamless interaction between the sticky-notes
and on-screen digital information, we seek inspiration from work
on tangible augmented reality (AR) interfaces [3, 17, 28, 41, 49].
For example, we employ a strategy similar to White et al. [49] for
presenting hints for interaction in the form of textual, diagrammatic,
and ghosted hints that are projected onto the work surface.

3 USER EXPERIENCE
To understand the tangible interactions and spatial visualization
grammar in Composites, we revisit the earlier example of designing
features for a smart ambient display. The designer loads Composites
on a desktop or laptop computer connected to a camera and projec-
tor, both pointing to a whiteboard wall (Figure 1 a). The designer
also prints out sticky-notes with ArUco [32] markers (similar work-
flow to AffinityLens [44]): some markers are ‘unlinked’ and can be
bound to data during analysis; others are configured to datasets
and data services that the designer’s software team has curated;
and a final set is configured with standard chart types such as bar
chart, line graph, and scatter plot.

In our earlier example, we saw that while brainstorming what
data to show to end-users on the ambient display, the designer
was interested in displaying weather information. Specifically, the
designer questions whether to alert end-users when the weather
changes during the day, for instance alerting about the chance of
rain. To further explore this direction, the designer places a physical
sticky note with the dataset name “weather dataset” anywhere on
the whiteboard wall (Figure 1b). This action loads the dataset, and
also displays virtual notes for all the columns in that dataset (pro-
jections of sticky-notes). Next, the designer employs what we term
sticky interaction: he creates a physical version of the projected
precipitation and month sticky-notes and places them on top of
their projected images. This binds the physical post-it notes to their
database columns. We call the operation of associating abstract
information with a physical note capturing. The designer can then
move these two notes into a specific spatial arrangement (the Com-
posites spatial grammar) which will generate a bar chart showing
amount of rain across different months (see Figure 1c).

The designer hypothesizes that based on geography, some users
may receive frequent alerts throughout the day. He creates a new
sticky note for ‘Washington’ (a state known to receive frequent
rainfall) and the year ‘2021’ using capture interactions. He then
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Figure 2: Various hints supported by Composites: (a) hint for
note placement, (b) capture scope, (c) error hints.

applies the two values as filters to the previously generated bar chart.
Next, taking an unlinked note, the designer writes “precipitation in
Seattle” and places it next to the projected bar chart. Composites
interprets this as a request to capture the visualization and “bind”
it to the new note. The designer can move the new note anywhere
on the wall and the configured visualization will be projected next
to the note. Next, the designer replaces the month column for the
‘day’ column to visualize precipitation for each day filtered for the
year 2020. This automatically reconfigures the bar chart and the
designer captures it with a new note “Seattle Daily Precipitation”
He can create visualizations for other states, facet the visualization
by month of year, and compare precipitation across different states
by moving and placing the corresponding notes next to each other.
Through this analysis he determines that rain alerts may be too
frequent for some users.

In the above vignette, the designer iteratively creates, and cap-
tures visualizations using physical notes augmented by virtual
information projected in close proximity to the physical note. Here,
sticky-notes, and their spatial-arrangement are the primarymode of
interaction for creating visualizations. To support such interactions,
Composites offers hints for note placement and data description,
and sticky interactions to instantiate and associate physical notes
with virtual objects (dataset, columns, visualizations, etc.).

3.1 Hints
While our spatial grammar is intended to be simple, Composites
gives immediate feedback (hints) to help facilitate interactions.
Hints are mostly ephemeral, and show up primarily when the sys-
tem recognizes a sticky-note in the user’s hand that is yet to be
placed, or briefly after a new note has been placed.

The first type of hints will highlight regions where the note can
be placed to modify the visualizations (Figure 2a). This is how, in the
above scenario, the user learned where to place a note to color or
facet the visualization. A second type of hint helps show the scope
of what the capture interaction will include (e.g. a particular facet
of a visualization, the filter, or the entire visualization (Figure 2b).
When capturing a visualization, the system highlights all the notes
that are part of its specification. The last type of hint (the only one
that is present all the time) helps with error conditions. Notes that
violates the spatial grammar are highlighted for revision (Figure 2c).

3.2 Sticky Interactions
When the designer writes on a note, the note acts as an alias for
some underlying construct (e.g., data, operation, visualization). If a
visualization is already on the screen, it is obvious that a new note
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Figure 3: Sticky Interactions for binding sticky notes with
virtual columns.

can be bound to that visualization as an alias (e.g., “precipitation
across differentmonths”). However, this is harder when the designer
is starting from scratch. If the designer knows the name of the
column (e.g., ‘precipitation’) they can simply write it. However, in
many situations they may be unaware of what is available or find
names that are unwieldy to write (e.g., student_full_name). Sticky
Interactions speed up this process by helping connect new notes to
data (e.g., columns), operations, or both.

When placing a blank note next to the dataset note, Composites
will display virtual (i.e., projected) notes for all columns in that
dataset. The designer can simply place a blank physical note on top
of the virtual one (e.g., student_full_name) and write freeform text
on it (e.g., name). This physical note becomes bound to the data
(see Figure 3a) and when moved around the workspace, Composites
will project the full column name on the top-right corner of the
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note. A second type of sticky interaction allows the analyst to auto-
complete notes (Figure 3b). Here the analyst places a blank note on
the surface and write one (or few) characters of the desired column
name. This displays virtual notes for all columns that begin with
those characters. As before, moving the note onto one of the virtual
notes will bind it. The last sticky interaction is for making a copy of
a note. Placing a blank note over an already initialized note, assigns
that same value to the note, and can be used in composition by
writing an alias over the blank note (Figure 3c).

4 COMPOSITES
In developing the spatial grammar for Composites, we reference the
“Grammar of Graphics” (GoG) syntax [50]. In GoG, visualizations
are specified by components that include data and aesthetic map-
pings, geometric objects, statistical transformations, and facets. For
example, in the R implementation (ggplot2) we specify a scatterplot
of diamond price versus carat as:

𝑔𝑔𝑝𝑙𝑜𝑡 () + 𝑙𝑎𝑦𝑒𝑟 (𝑑𝑎𝑡𝑎 = 𝑑𝑖𝑎𝑚𝑜𝑛𝑑𝑠,

𝑚𝑎𝑝𝑝𝑖𝑛𝑔 = 𝑎𝑒𝑠 (𝑥 = 𝑐𝑎𝑟𝑎𝑡, 𝑦 = 𝑝𝑟𝑖𝑐𝑒)
, 𝑔𝑒𝑜𝑚 = ”𝑝𝑜𝑖𝑛𝑡”, 𝑠𝑡𝑎𝑡 = ”𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦”, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = ”𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦”)
+ 𝑠𝑐𝑎𝑙𝑒_𝑦_𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 () + 𝑠𝑐𝑎𝑙𝑒_𝑥_𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ()+
𝑐𝑜𝑜𝑟𝑑_𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 () + 𝑓 𝑎𝑐𝑒𝑡_𝑤𝑟𝑎𝑝 ( 𝑐𝑜𝑙𝑜𝑟 )

Composites offers a spatialized version of the grammar in which
these components are represented by tangible notes and their role in
the specification is inferred by relative spatial position or through
identifiable markings on the note. Optionally, notes of different
colors can be used to help users better manage the roles of the
notes (e.g., ones bound to data versus operations).

Figure 4 represents the general specification for creating a visual-
ization. The specification can be divided into different ‘parts’–data
transformations, visualizations, and view transformations. Data trans-
formation consists of one or more filters (implicitly combined using
the AND operator) in which each filter operation is specified using
a filter note (which describes the filter condition, e.g., “> 800”) which
is placed below using a column name note (e.g., “price”). Visualiza-
tion specification consists of amark or schema type note. These may
be placed next to a pair of column notes configured in an ‘L’ shape
that indicate the 𝑥 and𝑦 axes (e.g., a line chart of price versus carat).
Optionally, the visualization can be faceted by placing a facet-by
note in the fourth corner.

To the right of the visualization specification are specifications
for view transformation and aesthetics such as sorting, and encod-
ing (by color). For example, a bar chart can be sorted in ascending
order by placing an arrange-by note on the right of the visualization
specification. Unlike filter specifications which are conjunctive, vi-
sual transformation tokens overwrite other similar token types to
the left of that token (e.g. the right most color-by token will over-
write other color-by tokens to its left, etc.). Finally, a specification
can be ‘captured’ as a single note by placing a capture note to the
right of the specification. A specification need not be a complete
visualization. For example, if the specification only contains filters,
the captured note can be used as a composite filter in combination
with other visualization specifications. Other specifications with
visualizations can be modified to generate new visualizations, or
used for comparison operations such as juxtaposition, superposi-
tion, or explicit encoding [13] (Figure 5). The benefit is that partial

code ‘snippets’ (expressed as specifications) can be retained and
re-used.

4.1 Parser
The Composites parser uses a grid-based clustering approach to
parse the spatial arrangement of notes into visualization specifi-
cations. The process consists of five steps: (1) pre-processing, (2)
gridifying, (3) clustering, (4) parsing, and (5) visualizing (see Fig-
ure 6). Note positions are extracted either directly (in the case of
the online sandbox) or through a camera feed. In the case of the
camera, the image is parsed using computer vision to extract note
positions as contours, and also recognize each note. The notes are
then assigned to cells in a grid structure based on their position in
space. Cells are approximately the size of a standard 3 inch square
stick-note. Starting at the top-left note as cell (0,0), we calculate
cell positions for all other notes relative to that note. Notes are
assigned to different clusters such that all adjacent notes (based on
cell position) are assigned to the same cluster, and different clusters
are separated by surrounding empty space (the cell size or larger).

Composites parses each cluster independently of other clusters,
based on a set of syntactic rules. The only exception is the dataset
cluster, which provides the data context for all other clusters. An
advantage of this assumption is that any data pre-processing (fil-
ters) can be done at this level,and will reflect across all clusters. A
rule in Composites consists of a collection of placeholder notes,
their types and relative position, along with corresponding spec-
ification variables that they map to. For example, the syntax for
creating a visualization with two axes consists of two placeholder
notes for variables 𝐶1, and 𝐶2 at cells (0,0) and (1,1) respectively,
and also a visualization note, 𝑆1, at cell (1,0). The corresponding
specification rule is made of three variables–chart-𝑥 , chart-𝑦, and
chart-type and is assigned to notes 𝐶1, 𝐶2, and 𝑆1. Parsing hap-
pens through template matching, in which each cluster is parsed
left to right, and matching placeholder notes are assigned with
instance values (e.g. 𝐶1 = 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝐷 , 𝐶2= 𝑆𝑐𝑜𝑟𝑒 , 𝑆1= 𝐵𝑎𝑟 ). This
design allows for creating new specification, and makes the system
more scalable. For example, one could define a new specification
for parallel-coordinate plot by writing a new template with a visu-
alization note followed by a set of columns (one for each axis).

If the note is part of the captured specification (e.g. it was previ-
ously bound to a complex filter), the note is unpacked by retrieving
its stored specifications. After parsing, any new captures are stored
in the same list. Constraints mentioned in the previous section
about order to data, encoding, and view specifications are followed,
and any note violating this constraint is marked for error han-
dling. While parsing, any partial templates and corresponding notes
are stored as hints. The output of the parser is a specification for
each cluster, along with hints and errors. The specification is then
rendered by the visualization module, by calculating placement
position from note coordinates within each cluster.

4.2 Interface
Using the Composites parser, we implemented two instantiations
of the interface–a browser-based ‘sandbox’, and a TUI version.
The set-up for the TUI version (Figure 8) consists of a projector
which renders the Composites workspace onto a large wall, along
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Figure 5: Operations on captured notes: (a), &(b) Juxtaposition
for comparison, (c) Superposition, (d) editing, (e) capture as
filter.

with a camera mounted on a tripod that serves as the input feed
to the parser. In earlier prototypes we implemented handwriting
recognition using off-the-shelf algorithms, but we observed poor
accuracy due to variations in handwriting. We believe this can be
addressed with a more sophisticated recognition system. but to
simulate a better interaction experience, we modified the computer
vision module to read ArUco markers [32] attached to each sticky-
note. This implementation was primarily used in designing and
developing the augmented TUI experience.

The sandbox version (Figure 7) can be operated using a mouse
and keyboard (though we have also used it on a touch screen dis-
play). The layout is comprised of a toolbox on the left, and large
gridded workspace spanning the rest of the window. The toolbox
includes virtual sticky notes for datasets, and other visualization
functions. Similar to the TUI experience, the sandbox provides note
placement hints on mouse hover on any note, and notes can be
placed and rearranged anywhere on the workspace using drag-drop
interactions. The workspace itself is scrollable, and supports pan-
zoom interactions to interact with multiple visualizations across
the workspace. The visible grid in both the projected and sandbox
versions is not strictly necessary but we found that (a) it encourages
unambiguous placement of notes, and (b) can be used to calibrate
the projector/camera.

5 PRELIMINARY EVALUATION
To validate Composites’s spatial grammar we conducted a small
user study. There are numerous dimensions on which a visual lan-
guage can be evaluated [16]. In building the Composites grammar,
we contrasted our grammar to the Grammar of Graphics to ensure
sufficient expressiveness in the language (i.e., that it was possible
to generate a wide array of visualizations). With the user study,
our specific evaluation goals were on learnability and usability. We
conducted this study with 15 participants (8 women) recruited from
a major university. Ten out of fifteen participants took a course on
information visualization or statistics in the past two years, and all
participants reported proficiency with one or more visual analytics
tools (e.g., Tableau, Excel, R, SPSS, Power BI).

5.1 Tasks
The study consisted of 28 tasks, broadly divided into three types: (1)
tasks that required participants to provide the visualization, given
a specification (4 tasks), (2) tasks that required them to provide
the specification for a given visualization (4 tasks), and (3) tasks
that required them to create one or more visualizations to answer
visual analytics questions (20 tasks). For the initial eight tasks, we
used a Store Sales dataset, and the analytics tasks were based on
three different datasets – Coffee Sales (10 tasks), Titanic (5 tasks),
and Baby Names (5 tasks). Example tasks include simple tasks like
“Which region has the highest coffee sales?” and more complex
tasks such as “For the product with the lowest sales, which state
sold the most of that product?”

5.2 Procedure
The study was conducted using the sandbox version of Composites,
which was deployed on a standard Windows 10 machine connected
to a 23-inch full HD display. We elected to use the sandbox to both
scale our testing and to eliminate confounds due to the implemen-
tation of the computer vision infrastructure (our goal was to test
the language and not to confound it with errors in the off-the-shelf
recognition software). Each session lasted between 70-90 minutes,
and participants were compensated with $15 in cash for their time.
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Figure 8: TUI implementation of system using a projector
and camera (shown in foreground).

After completing a brief pre-test questionnaire, all participants
were provided with an overview of Composites, and given a guided
tutorial along with a demo that explained the syntax, and other
interaction features of Composites. Once participants indicated
familiarity with the syntax they proceeded to answer the first eight
tasks which primarily tested their understanding of the syntax. Task
instructions were provided in a PowerPoint presentation format,

and participants were instructed to paste screenshots of the sand-
box along with notes and visualizations as part of their response.
After successfully completing the initial eight tasks, participants
worked on the remaining analytics tasks. Finally, all participants
filled out the USE Questionnaire [30] to report their experience and
any additional feedback.

5.3 Results
Overall, participants correctly responded to most of the analytics
tasks (mean = 82.9%, sd=20.92%), with five participants (33%) who
got all of them correct. We discovered that two participants did
not appear to understand our instructions and only attempted 9,
and 10 tasks respectively. When excluded from analysis, the mean
grade improves to 89.68% (sd=11.17%). In analyzing the responses,
we observed two common reasons for error: (1) confusion between
note ‘strokes’ for different functionality in which some participants
incorrectly used filter instead of color, etc., and (2) a few partici-
pants did not fully grasp the idea of capture and reuse. The former
issue can be easily remedied by using ‘strokes’ that are more vi-
sually distinct from each other. In the latter, the participants did
not leverage the surface and instead tried to to produce a single
visualization to answer the question. There are a number of possible
reasons for this including that they believed that we wanted only
one visualization as an answer but may also be due to their past
experiences with visual analytics where there is less emphasis on
combining visualizations in different ways.

In the post-test questionnaire, participants rated Composites
on a 7-point Likert Scale along the following attributes: useful-
ness (𝜇=5.87, sd=0.91), ease-of-use (𝜇=5.26, sd=1.09), learnability
(𝜇=5.33, sd=1.33), easy-to-remember (𝜇=5.73, sd=1.03), and satisfac-
tion (𝜇=5.6, sd=1.04). In addition, participants reported that they
found the drag-and-drop interface was easy to use, and “placement-
indicators” made it easy to learn the syntax. One of the participants
who got all of the tasks correct reported that “. . . I like to be able
to think in patterns. . . ,” while another participant mentioned that
they liked the consistency of the interface with fewer clicks to get
the results. Participants also expressed the desire for more com-
plex interactions such as sliders, complex filters, and expanding
and editing captures. In our future work, we will incorporate this
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feedback and evaluate the TUI set-up of Composites for design and
creative problem solving tasks.

6 DISCUSSION AND FUTUREWORK
Composites was designed to address two problems simultaneously.
First, our goal was to find a way of using tangible objects in an
‘immersive’ space to support tasks akin to those of a standard visual
analytics platform. Ideally, this could be done cheaply and in a large
work surface. Second, we wanted to find a way to extend what many
designer’s view as their ‘habitat’–large surfaces and sticky notes–to
support quantitative tasks. Composites allows us to address both
challenges simultaneously. Sticky notes retain their usual roles (e.g.,
for card sorting, affinity diagramming) but also become the tangible
language and interface for the analytics platform.

The use of data in design tasks is an important and challenging
problem. New classes of design–for example, creating AI-powered
applications–involve connecting personas with data [45]. Data-
assisted affinity diagramming [44] is one solution. Here, the de-
signer can view a summary visualization of underlying notes through
the lens of a camera phone. Composites offers a powerful extension
that enables the designer to build their own analyses through a
tangible language. The resulting projected visualizations can sit in
the same space as sticky notes from interviews or surveys. Having
built Composites, our continuing goal is to understand how it is
used in specific design scenarios.

6.1 Assumptions and Limitations
Our current instantiation of Composites demonstrates a novel ap-
proach for conducting visual data analysis within existing design
practices and flexible and low cost work surfaces.While sticky notes
are readily available, and provide great flexibility and control, the
notes themselves are temporary, and unlike a Jupyter “document,”
require some effort to save, share, and reload. To save Composites
specifications would mean making everything virtual, and rebind-
ing sticky notes to virtual information upon loading. The tight
coupling between sticky notes and Composites makes the results/
insights less accessible outside the AR environment. A partial solu-
tion is to capture the entire workspace and make it available in the
digital sandbox.

Due to our use of off-the-shelf computer vision and handwriting
recognition, Composites struggles with certain conditions (e.g.,
messy handwriting, or poor lighting conditions). Additionally, while
our current implementation, which only requires a projector and
standard webcam, is cheap and accessible, it also suffers occlusion
and resolution issues. This limits the range of end-user’s mobility in
space, and would require special adaptation to overcome occlusion.
As part of ongoing work, we are experimenting with projecting
picture-in-picture style ‘proxy’ views for occluded region where
the display is not blocked. Head-mounted AR displays such as the
Hololens, in which both display and camera are positioned between
the user and the wall, mitigates occlusion. However, Hololens-
style systems have a limited field of view prevents good awareness
outside of center of interest. Another alternative is the use of dual
projectors which can eliminate occlusion ‘shadows’ (e.g., [46]).

6.2 Future Work
While the current study examines whether people can understand
and use the spatial grammar component of the Composites to con-
struct visualizations, there are several directions which we would
like to explore further. Three particularly exciting avenues for fu-
ture work are visual analytics education, higher level semantic
interaction, and collaborative decision making scenarios. Systems
like Tableau are effective for exploring tabular data, but face a steep
learning curve for novice users who are unfamiliar with the kind
of table-based analytics that they support. Composites makes it
easy to capture an existing visualization into a template that can
be reused and edited. These captured visualizations can represent
starting points for novices where direct manipulation can be used
for subsequent changes, and hints for modification can be overlaid
directly on the visualization itself. We would like to investigate
whether the spatial grammar (along with contextual hints) can be
learned more easily than other, existing systems. Another avenue
to explore more deeply is the utility of higher level interactions
with full visualizations. Composites lends itself naturally to incor-
porate (and extend) recent work on semantic snapping [25] so that
alternate representations can be suggested when multiple visu-
alizations are brought together in close proximity. The ability to
create and capture new visualizations by combining existing visu-
alizations could allow the user to answer deeper questions without
worrying about the low-level interactions required to create them.
Finally, exploring whether the spatial affordances that the system
was designed for truly facilitates collaborative decision making is
an important future step.

7 CONCLUSION
We describe the design and implementation of Composites, a new
tangible interaction paradigm for data-driven design practices. Com-
posites allows designers to use their existing design work surfaces
to conduct visual data analysis. Construction and modification of
visualization is made possible directly on the surface through the
use of tangible sticky-notes and a spatial grammar. The tangible
tokens allow for quick rearrangement and encapsulation of insights,
and our expressive spatial grammar is scalable, and can support
a wide range of analytic needs. Using Composites, designers can
easily create, modify, group, and combine multiple visualizations,
all in the same view. The fluidity in movement between tangible and
virtual tokens preserves the best affordances of sticky notes, while
providing computational scaffolding to assist with complex visual-
ization tasks and may be applicable to other AR-based analytical
systems.
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