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ABSTRACT
The focus of intelligent systems is on “making things easy”
through automation. However, for many cognitive tasks—
such as learning, creativity, or sensemaking—there is such a
thing as too easy or too automated. Current human-AI design
principles, as well as general usability guidelines, prioritize
automation, and efficient task execution over human effort.
However, this type of advice may not be suitable for designing
systems that need to balance automation with other cognitive
goals. In these cases, designers lack the necessary tools that
will allow them to consider the trade-offs between automation,
AI assistance, and human-effort. My dissertation looks at us-
ing models from cognitive psychology to inform the design
of intelligent systems. The first system, Florum, looks at au-
tomation after human-effort as a strategy to facilitate learning
from science text. The second system, TakeToons, explores
automation as a complementary strategy to human-effort to
support creative animation tasks. A third set, SmartCues and
Affinity Lens use AI as a last-mile optimization strategy for
human sensemaking tasks. Based on these systems, I am look-
ing to develop a design framework that (1) classifies threats
across different levels of design including automation, user
interface, expectations from AI, and cognition and (2) offers
ways to validate design decisions.
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INTRODUCTION
Intelligent applications allow non-experts to create animated
stories, journalists to quickly churn out news articles, and stu-
dents to solve complex equations by simply taking a picture.
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What causes lightning?
High in the sky, the air is very cold. This causes
the moisture in clouds to freeze and form ice 
particles. These tiny bits of ice bump into each
other as they move around in the air, and each
collision creates a small electrical charge. With
time, the cloud's electrical charge begins to
separate. Positive charges (called protons) 
form at the top of the cloud, while negative

What causes lightning

moisture in clouds

ice particles

Figure 1. Florum: An active reading tool for causal diagramming and
causal text comprehension.

The overarching goal across all these applications is to make
things easy for end-users. However, if we consider the cog-
nitive processes associated with these tasks such as human
learning, creativity, or sensemaking, there is such a thing as
too easy or too automated. For example, if AI replaces the
creative agency of animators by directly animating from a
script, the resulting experience would be less enjoyable for
the animator. Or if learning to solve equations is the goal,
automatically solving them for the student is less than ideal.
In such cases, how do designers decide as to where along the
continuum of human-effort—augmentation—automation
lies the optimal user experience that is desirable to end-users
but also meets their cognitive goals and expectations?

Current human-AI design principles, as well as general us-
ability guidelines, prioritize automation and efficient task ex-
ecution over human-effort (e.g., [7, 9]). For instance, mixed-
initiative design takes a probabilistic approach to act on users’
goals when the goals are clear and uses dialog to resolve any
uncertainty. When applied to cognitive tasks, it is unclear how
such a system should handle the trade-off between goal execu-
tion and disruption to cognition (e.g., the goal of the student
to solve the equation, and the underlying learning objective).
Similarly, Nielsen defines five usability goals for designing
interactive systems: learnability, memorability, efficiency, low
error rate, and satisfaction. By integrating AI features, design-
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ers can still meet all these goals. But obviously, the goals do
not account for the negative impact of AI on cognition.

Therefore, developing guidelines for intelligent systems
should require careful consideration of analogous cognitive
models. In fact, many of the usability guidelines in use today
are influenced by such models [3]. For example, Fitt’s law
is based on our understanding of human perception, cogni-
tion, and motor-movement. Design principles for grouping
interface elements, determining the amount of information
to display, and ways to direct user attention are derived from
models of human memory, and other perceptual gestalts.

In my dissertation, I investigate how cognitive models can
inform the design of human-AI applications. Specifically, in
Florum, an active reading tool, I look at how machine un-
derstanding of causal texts can assist readers in constructing
causal diagrams from the text. Through a strategy called “auto-
mate after human effort,” Florum monitors learning outcomes
and automatically generates diagrams for already learned con-
cepts. Both SmartCues and Affinity Lens use machine per-
ception to scaffold the top-down approach to sensemaking—
a strategy I call “automation for last-mile optimization.” In
TakeToons, I look at coupling performance-based animation
with automated animation output, i.e., “automation as comple-
mentary to human effort” to produce animated stories. Based
on these systems, I am looking to develop a design framework
to help designers identify potential threats to cognition and
validate design features against those threats.

AUTOMATION AFTER HUMAN-EFFORT
In the learning domain, broadly, there are two types of intelli-
gent tools: productivity tools, and intelligent tutoring systems.
Productivity tools aim to improve learner efficiency by re-
ducing the time and cognitive cost of learning (e.g., dictation
tool). On the other hand, intelligent tutoring systems focus on
successful learning through student modeling, personalized
content and learning interventions. The reality is, there is a
need for hybrid learning tools that adhere to learning goals but
also makes the process efficient for learners.

My ongoing work explores this idea in the context of science
text comprehension. Scientific text is often causal in nature
(e.g., what causes coral bleaching?). But many readers find it
challenging to understand causal relationships in scientific text.
Prior work in cognitive psychology has shown that knowledge
externalization strategies such as student-generated causal di-
agrams could facilitate comprehension [4]. But studies have
also shown that students perform poorly due to the cognitive
load involved in making diagrams while reading [15]. In Flo-
rum, which is a pen and ink tool for reading and diagramming,
I look at ways to make diagramming easy, but also facilitate
causal understanding (i.e., maintain desirable difficulty). Flo-
rum combines NLP models of causal text understanding with
active reading techniques for diagram construction.

As shown in Figure 1, as opposed to a dedicated diagramming
interface which is inefficient, readers construct diagrams by
using pen and ink annotations over the text. They start by
highlighting important sentences while reading. Under the
hood, Florum uses a text understanding model to extract key
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Figure 2. TakeToons: A tool for script-based performance animation.

causal phrases from the text and displays them as hints to
the reader. Then through rereading, they underline individual
causal phrases which get added to the diagram view. Florum
uses a combination of stroke recognition and the context of
the text to determine how to represent the text as a diagram
object (e.g., nodes, icons, etc.). Further readers can build
edges between causal phrases by drawing a connecting line
between them. Florum also allows readers to create multiple
sub-diagrams, and then combine them using summarization
strategies such as deletion and generalization. These features
are directly modeled after the constructive approach to text
comprehension in which readers start by identifying individual
phrases, and then build sentence-level propositions, and finally
combine them to form a coherent mental model [8].

In addition to direct assistance through NLP hints, Florum au-
tomatically generates diagrams from text using a strategy I call
automation after human-effort. To determine when diagrams
can be automatically generated, I consider evidence from past
diagramming activities. If there is evidence that the reader has
successfully represented certain causal relationships (e.g., cold
air causes water to freeze), when reading subsequent explana-
tions, if exists, those relationships are automatically rendered
in the diagram view. This facilitates building new causal re-
lationships from prior causal models (i.e., prior knowledge).
My work extends the mixed-initiative model [7] by factoring
diagram construction and learning causal relationships as sep-
arate goals with weighted utility functions. When the utility
of learning is higher (i.e., no prior evidence that the student
understands a causal relationship), the system favors assis-
tive hints. But when the utility from diagramming is higher,
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Figure 3. Affinity Lens: A tool for data assisted affinity diagramming
using augmented reality.

Florum takes action by automatically rendering those causal
relationships.

AUTOMATION COMPLEMENTARY TO HUMAN-EFFORT
Creativity is a key trait of human intelligence. According to
Boden, it is our ability to produce novel and valuable ideas
by applying a set of generative rules to any given conceptual
space (e.g., painting, music, poetry, etc.) [2]. But due to the ex-
ponential number of variables that can be manipulated within
these creative spaces, creativity tools are highly complex. AI
can reduce some of this complexity by abstracting low-level
tasks, but the trade-off is reduced control for the human. There-
fore a key challenge is to determine ways to reduce interface
complexity while still maintaining human creative agency.

In TakeToons [14], I explore this design problem in the context
of performance animation. Performance animation tools such
as Adobe’s Character Animator [1] allow actors to directly
map their performances on to puppets by using speech and
head-pose tracking. But in addition to performance mapping,
the interface also supports other types of ‘trigger’ based ani-
mations such as the use of props, special effects, scene change,
camera angle change, etc. Collectively these operations en-
hance the ‘value’ of the final animation output, but they have
to be manually triggered by the actor during the performance.
This disrupts the ‘flow-state’ (intense concentration and enjoy-
ment) of the actor in performance [6].

My approach in TakeToons is to lower the interaction cost by
using automation as complementary to human performance.
Specifically, TakeToons maps spoken dialog to a pre-defined
script that is annotated with animation triggers (by the actor).
As shown in Figure 2, as the actor performs the dialog, Take-
Toons automatically triggers non-performance animation in
real-time. This is accomplished by transcribing the spoken dia-
log and aligning it to the script (and metadata). This approach
reduces the interaction cost while allowing actors to maintain
agency and perform at their own pace and style. In addition,
TakeToons provides speech-based commands to support just-
in-time edits and retakes, and automatically compiles the final
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Figure 4. SmartCues: A gestural interfaces for details-on-demand
through dynamically computed queries

animation for the actor. The design decisions implemented in
TakeToons are based on flow theory and the need to minimize
disruption to the creative process.

AUTOMATION AS LAST-MILE OPTIMIZATION
In the case of sensemaking, humans engage both top-down and
bottom-up processes to search raw data, generate hypotheses,
gather insights and eventually build up to a mental model about
the data [11]. But to deal with increasingly large and complex
data sources, intelligent tools have been developed that offer
assistance by automating the foraging and insight generation
process. The problem is that analysts often find it difficult
to understand the context or relevance of such insights [5].
In my work, I look at ways to optimize the top-down search
process by combining human inputs with automation, as an
alternative to replacing it. I have developed two systems:
Affinity Lens [13] and SmartCues [12] in which AI facilitates
querying over data and visualizations.

Affinity Lens is a tool that allows designers to incorporate
mixed data sources in the process of affinity diagramming.
In traditional affinity diagramming, designers use physical
sticky notes that represent qualitative data points and engage
in sensemaking by forming affinity clusters of those notes.
When incorporating quantitative data into this process, current
approaches favor automated clustering using quantitative data.
This is problematic because designers may find it hard to
interpret the resulting clusters. As shown in Figure 3, in
Affinity Lens, I allow designers to use notes and clusters as
query inputs to fetch quantitative insights. By using computer
vision to identify individual notes, Affinity Lens generates
and overlays data insights on top of physical sticky notes. In
addition, based on current (human-generated) clusters, my
system makes recommendations for clustering other notes. In
Affinity Lens, designers have control over the top-down search
process and queries are generated from affinity clusters (i.e.,
last mile optimization).
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Figure 5. A preliminary framework for evaluating Human-AI system
design.

In SmartCues, I look at facilitating the process of chart compre-
hension. As an alternative to automatically annotating insights
over charts, SmartCues allows chart readers to request specific
details through direct manipulation gestures. The design is
motivated by the theory of graph comprehension [10] in which
readers acquire insights through a series of extraction that
involve one or more data points. What is difficult for readers
is extracting values of encoded visual marks (bar, point, line,
etc.) by reading corresponding axes values—last-mile prob-
lem. As shown in Figure 4, the reader expresses the query
to retrieve the difference between two bars by performing si-
multaneous tap gesture over those bars. SmartCues converts
this gesture into a search query and looks for all details that
correspond to those bars. Here SmartCues uses a combination
of prediction, and mixed-initiative dialog to render the final
query result as an annotation. In this case, the result is the
difference between the two bars.

CONCLUSION
In summary, my dissertation work looks at using cognitive
models to design interactive intelligent systems for human
critical tasks such as learning, creativity, and sensemaking. I
have developed systems in all three domains that implement
novel strategies for combining AI with human effort: (1) Au-
tomation after human-effort, (2) Automation complementary
to human effort, and (3) Automation as last-mile optimization.
Based on the design of these systems, I have a preliminary idea
for a design framework that models the potential ‘threats’ from
each of the components in the Human-AI pipeline (Figure 5).
I would love to brainstorm with the UIST DC committee
about further developing this framework, and get advice on
ways to evaluate the framework. I also welcome feedback on
the themes I have generated across these different systems to
strengthen the contributions of my dissertation.
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