
TakeToons: Script-driven Performance Animation
Hariharan Subramonyam1,2, Wilmot Li2, Eytan Adar1,2, Mira Dontcheva2

1University of Michigan, 2Adobe Research
Ann Arbor, MI Seattle, WA

{harihars,eadar}@umich.edu {wilmotli,mirad}@adobe.com

...build robots.
 I also like to
 travel. This is

CUT...
LETS TRY THAT
AGAIN

This is Evans

(a) (b) (c)

Figure 1. The performer reads a line from the teleprompter (a), which highlights the text and automatically scrolls to the next line. The performer
forgot to move her head to the right, so she says, ‘cut! let’s try that again’ (b) to re-record the line (c).

ABSTRACT
Performance animation is an expressive method for animating
characters through human performance. However, character
motion is only one part of creating animated stories. The
typical workflow also involves writing a script, coordinating
actors, and editing recorded performances. In most cases,
these steps are done in isolation with separate tools, which
introduces friction and hinders iteration. We propose Take-
Toons, a script-driven approach that allows authors to annotate
standard scripts with relevant animation events like charac-
ter actions, camera positions, and scene backgrounds. We
compile this script into a story model that persists throughout
the production process and provides a consistent structure for
organizing and assembling recorded performances and propa-
gating script or timing edits to existing recordings. TakeToons
enables writing, performing and editing to happen in an inte-
grated and interleaved manner that streamlines production and
facilitates iteration. Informal feedback from professional ani-
mators suggests that our approach can benefit many existing
workflows supporting individual authors and production teams
with many different contributors.

Author Keywords
performance animation; animation script; speech;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 ACM. ISBN 978-1-4503-5948-1/18/10. . . $15.00

DOI: https://doi.org/10.1145/3242587.3242618

INTRODUCTION
Advances in performance animation systems are making it eas-
ier to create animated stories. Instead of specifying keyframes,
as in traditional animation workflows, actors can directly cre-
ate animations by acting out their characters. This approach is
now part of professional workflows where software translates
physical motion and audio to character animation [1]. How-
ever, performing motions is not the only task in creating a story.
The complete workflow involves writing a script, coordinating
actors, and editing the collection of recorded performances
together into a complete animation. Since these tasks are typ-
ically done one at a time, earlier steps in the process cannot
benefit from the context of later stages. For example, the script
writer may not know or be able to influence, exactly what
a voice actor sounds like or how the animation will appear
in a given scene. Additionally, any changes to the script or
performance require most of the animation and editing work
to be redone. These limitations increase the time and cost of
creating and iterating on animated stories.

We propose an approach for creating animated stories that in-
tegrates and interleaves writing, performing and editing. The
key idea is to encode dialogue, scene changes, voice perfor-
mance, and motion in an integrated and unified representation,
what we call a story model, that allows us to support interleav-
ing of the three main tasks. For example, as users perform,
the recordings are automatically assembled into an animated
story, which provides a quick preview of the results and con-
text for subsequent performances. Changes to the script can
be interleaved with performing without losing prior work. By
integrating and interleaving parts of the workflow, animators
can create and edit animated stories more efficiently.

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

663

https://doi.org/10.1145/3242587.3242618

We demonstrate this approach in the context of an end-to-end
animation authoring system, TakeToons. With TakeToons,
the user starts by writing a script, the natural first step in the
process. TakeToons scripts allow users to add markup that
indicates when animated events (e.g., changes to a character’s
pose or appearance, cuts to different camera angles) occur
within the dialogue. As the user reads and acts out the script,
TakeToons automatically generates an animation from the
performance and edits the footage together.

To support this animation workflow, TakeToons includes sev-
eral key contributions. The TakeToons script language extends
standard screenplay markup [12] to allow the writer to specify
dialogue and on-screen performance behaviors for characters,
sets, camera, and sound. TakeToons parses a script into a
story model, a flexible internal data structure that captures the
relationships between different events in the story. This model
supports generating complex animations with multiple char-
acters and layered animation where multiple events happen at
the same time (e.g., one character reacts while another speaks).
The story controller interprets user performances and maps
them onto the relevant parts of the story model. To control
the recording process, performers can interact with a physical
interface (e.g., keyboard, touchscreen). When performance
makes it difficult to be near a computer (e.g., running or jump-
ing), the performer can also ‘be the director’ by controlling
recording through speech commands. To support these com-
mands, the story controller uses the story model to determine
which speech is and is not part of the scripted dialogue.

TakeToons guides performers through a teleprompter interface
that advances as the user speaks and displays the resulting
animation in a stage view that provides a live preview of the
animated content (see Figure 2). A single performer can go
through the script one line at a time doing voice and physical
performance simultaneously. TakeToons will auto-trigger pre-
defined animations that are annotated in the script creating a
rough cut of the whole animation in one pass. The system
also supports redoing recordings and layering animation on
top of the previously recorded content. Beyond the flexibility
for an individual performer, TakeToons supports collaborative
recordings. Different people can record different parts, and
TakeToons will assemble the recordings into a final animation.
Collaborative recordings can be synchronous or asynchronous.
In asynchronous situations, previous recordings can give actors
context, as TakeToons plays the previous recordings while the
actor performs.

We used TakeToons to generate three animated stories that in-
clude interactions between multiple characters, scene changes,
cuts between camera angles, automatically triggered anima-
tion cycles, and both voice and facial performances. These
results demonstrate the range of story configurations and an-
imation effects that TakeToons supports. We also obtained
informal feedback from professional animators, who noted
the practical benefits of our proposed workflow. Though our
current implementation focuses on animation, we discuss how
TakeToons’ approach can be applied to other speech-driven
scenarios including lectures and presentations.

RELATED WORK
Scripts and animation
Previous work has explored techniques that leverage domain
knowledge to automatically generate animation from natural
language [6, 17, 21, 28]. In contrast, TakeToons allows ani-
mation authors to define how performances and automatically
triggered animation should be combined using familiar script
formats [16]. While our current approach does not perform
any semantic analysis on the script, techniques that infer prop-
erties like mood, intent, scene changes, and character motion
from written text could complement our proposed workflow
by proposing where to insert animation events into the script.

Script-based editing of video and audio is an emerging re-
search area [3, 27]. While TakeToons is the first to show how
script-based editing can be useful in animation settings, pre-
vious approaches may be useful extensions to support perfor-
mance feedback [26], editing after the performance is done [3],
and misalignment between the script and the performance [29].

Performance animation systems
In performance animation live performance of actors is trans-
lated to actions of computer-generated characters. As the actor
acts, the character moves, making it possible to animate with-
out specifying individual keyframes [30]. TakeToons incor-
porates several features of existing commercial and research
performance animation systems. Previous work has explored
techniques for animating a character’s face through speech [5,
9, 10, 15] and expression changes [7]. TakeToons leverages a
commercial performance animation system [1] that supports
speech-driven mouth animation (i.e., lip sync) and expression-
driven facial animation. To support a broader range of ani-
mated effects, Willet et al. [35] present a user interface for
triggering predefined animations during live performances.
TakeToons also uses predefined animations but triggers these
events based on the script markup. In addition to character mo-
tion, we support triggering of scene changes and camera cuts,
which allows actors to control such higher-level events during
performance, as demonstrated by Barnes et al. [2]. Finally,
TakeToons enables layering of multiple performances [11] to
produce complex animations.

Speech commands for navigation and editing
In addition to generating lip sync animations from speech per-
formances, TakeToons recognizes speech commands that al-
low actors to navigate the script for retaking performances and
recording characters out of order. Previous work has shown
that speech-based interfaces make creative editing tasks eas-
ier by abstracting interface complexity [19, 34]. Systems for
video scrubbing and editing use a transcript to make it easy
for users to issue semantic queries to find specific frames [24,
8]. In TakeToons, we support similar natural language queries
for navigating the script. Wang and van de Panne [34] com-
bine spoken input with mouse pointer input to ‘direct’ the
actions of animated characters (e.g., “walk to here”). This
approach is closest to ours in that it supports speech-based
system commands for selecting characters, actions, start and
end recording, replay and reset. However, we focus on us-
ing speech input to navigate the script, not to direct how the
characters are animated.

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

664

SAVE CANCEL

You say:

a cScript Editor

b TakeToons Performance Capture Interface

Compiled Timeline View

TELEPROMPTER STAGE

L0 L1 L2

Figure 2. TakeToons (a) The script editor allows writing and editing the Fountain script. (b) The performance capture interface consists of a
Teleprompter view (left) to read the script, and a stage view (right) for live preview of the animation. (c) The compiled animation is exported to
Adobe Character Animator’s timeline for fine-grained editing. The action bar at the bottom of the teleprompter view provides hints for speech interac-
tions (here: “say ‘preview animation’ or ‘start recording’”) and editing buttons for recording, stopping, doing retakes, and playing the animation as an
alternative to speech commands.

USER EXPERIENCE
To demonstrate the key features and overall user experience
of our system, we describe the process of creating an original
animated story, “The Three Little Monsters,” using TakeToons.

Script
To create an animated story with TakeToons, our animator,
Dave, starts in the same way most production workflows
begin—by writing a script. Our system uses a script format
that extends Fountain [12], a standard text markup language
designed for screenwriting (Figure 2a). Dave can create stan-
dard lines of dialogue and scene changes. In addition, he
can also add annotation for animation, camera control, and
sound effects. For example, to indicate that a monster named
Wilk should raise her arms while saying “so big!”, Dave can
insert an annotation like “[[motion:Wilk-raise arms]]” at the
appropriate spot in the script (see Figure 4).

Voice performance
Given a script, TakeToons allows one or more performers to
produce the corresponding animated content through voice
interactions. Figure 2b shows the user interface for these
interactions, which consists of two side-by-side views: (1)
the teleprompter view which shows the script (along with
line numbers, and character names), and (2) the stage view
for viewing the animation as it occurs in real-time. In our
current implementation the stage is derived from Character
Animator’s performance animation engine.

The interface shows both the teleprompter and stage views
with the sets and characters loaded. Once a script has been
loaded, a typical workflow can begin with Dave telling Take-
Toons to start recording either by pressing a button at the
bottom of the teleprompter view or by issuing the speech com-
mand: “start recording.” Though Dave is not using full-body
performance here, he prefers to verbally direct recording and
playback. The teleprompter view highlights the first line in
the script, prompting Dave to start performing that line (a
microphone icon indicates recording is in progress).

As Dave reads the line, the teleprompter view highlights
recorded words in real time, and the stage view shows a live
preview of the corresponding animation. In this case, the ani-
mation includes lip sync for Wilk, one of our three monsters,
who is speaking. In addition to the vocal performance, Dave
can simultaneously control Wilk’s head motion and expres-
sion through facial performance. Any other actions (e.g., a
pre-defined hand gesture) that are in the script will trigger
automatically when Dave hits the associated line or word in
his voice performance.

Interleaved performance and editing
If Dave stumbles over a line or is unhappy with his perfor-
mance, he can stop recording by saying: “cut.” From here,
Dave can tap on the line to go back in the teleprompter or can
issue the redo command by saying, “let’s try that again.” In
response, TakeToons resets the teleprompter to the beginning
of the current line and rewinds the stage view to show the
scene and characters in the reset state. After performing the
line again, Dave can tell TakeToons to keep going by saying,

“continue recording.” During a recording session, Dave always
has the option of replaying ‘rendered’ segments (e.g., “play
animation” for the last line) or the entire animation (“play
from beginning”).

Beyond fixing performance errors with retakes, Dave can also
interleave edits to the script and animation metadata with his
performances. While recording, Dave sees that the fire anima-
tion occurs before he has completed the utterance “. . . I can
breathe fire.” To rectify this, he opens the script editor view
which is accessible from the teleprompter. He moves the posi-
tion of the ‘fire-animation’ tag later in the dialogue and saves
the script, which brings him back to the teleprompter view.
TakeToons has automatically updated the timing of the fire an-
imation to reflect the change. Similarly, Dave can delete a line,
change line order, or even edit the dialogue using the script
editor. When dialogue is edited, the teleprompter view indi-
cates that the relevant line needs to be rerecorded. Other edits
such as deleting and reordering lines automatically update the
animation without requiring any additional recording.

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

665

Layering animation
In stories with multiple characters, the user may want to layer
additional (unscripted) animations on top of a given line of
dialogue. For example, when Wilk breathes fire on line three,
Dave may want Ramirez (the other monster in the scene) to
recoil a bit. To perform this type of layering, Dave says “lets
layer Ramirez on line three.” The teleprompter and stage
view reset to line three, and the system starts recording with
Ramirez activated to respond to Dave’s performance. The
other pre-recorded animation (including Wilk’s line of dia-
logue) is played back, while the new Ramirez animation is
captured. For some types of performance (e.g., facial reaction
shots) it’s easier for Dave to focus on only those events. Take-
Toons allows him to do this by recording the parts where Wilk
is reacting separately from the parts when he is talking.

Character-by-character performance
While Dave can perform all the characters himself, TakeToons
also supports multiple actors working collaboratively on differ-
ent roles. For example, Dave may choose to play Wilk while
getting a second actor, Jill, to perform Ramirez. To record
in character-by-character mode, Dave says “lets record Wilk.”
The teleprompter view adapts by reducing the font size for the
lines that Dave does not need to perform, which preserves the
broader context of the scene while keeping the focus on Wilk’s
lines. If Jill hasn’t recorded her Ramirez lines yet, TakeToons
can work as a virtual “scene partner.” The system will gen-
erate placeholder animations by synthesizing the speech and
triggering the corresponding animations in the scene. This
gives the Wilk character a more natural performance as Dave
can respond to a performed Ramirez rather than just the text.
If any of Ramirez’s lines have already been recorded by Jill,
TakeToons uses these recordings rather than the placeholders.
While in this asynchronous mode, Dave can edit animation
triggers and ordering of Ramirez’s dialogue to blend with his
performance. TakeToons handles such edits without requiring
Jill to reperform her lines.

Wrapping up
Once he is happy with the performances, Dave can either
directly publish the resulting video or export the various
recorded files to a structured timeline representation for addi-
tional editing and refinement in a traditional animation editing
environment (Figure 2c). When producing the timeline view,
TakeToons automatically structures the recorded segments so
they are properly time-aligned and in-sync with the script.
Any timing edits that Dave makes to the timeline are propa-
gated to the story model. All timing changes are preserved
during animation playback (e.g., when Dave’s performance
is played back as Jill records Wilk). In addition, TakeToons
also preserves timing edits to triggered animation even when
a performance is rerecorded. In this way, our system supports
interleaving of fine-grained timing edits with performance.

SYSTEM ARCHITECTURE
At the highest level (see Figure 3), TakeToons is a tool for
optimizing animation workflow by generating an animation
from an annotated script, speech, and non-speech performance
data (e.g., facial motion). The main system consists of two

main components: (1) a script parser that transforms a Take-
Toons script into a story model (our internal representation of
an animated story); and (2), the story controller that manages
the current state of the story model (recording and playback)
as the user performs various parts of the script. For speech-to-
text, TakeToons currently uses Google’s real-time API [13].
We use Adobe Character Animator’s performance capture and
animation engines to map performance (voice, motion, etc.)
to animation [1]. Control of Character Animator is achieved
through a custom Python-to-Lua API. TakeToons’ is imple-
mented in Python with a web-based (HTML and JavaScript)
client for the teleprompter view. Here, we focus on Take-
Toons’ script parser, story model, and story controller, the
novel contributions of our work.

TakeToons script language
While standard-format screenplay text [31] is flexible, it is
primarily intended to convey the story and not other facets
of the production. A screenplay, for example, does not gen-
erally provide instructions on camera positioning or detailed
animation instructions. Each job in the animation process (e.g.,
directors, cinematographers, animators) has its own ‘formats’
for describing inputs (what the person should do) and com-
municating outputs (intermediate products to show others):
storyboards, animatics (rough sketched animations), expo-
sure sheets (details on animation cels at the frame level), pre-
visualizations (camera movement simulations), ‘needle-drops’
(temporary musical scores), etc.

With TakeToons, many of these jobs become ‘compressed,’ re-
quiring a more general format for communicating what should
happen, and when, in the final product. Because the story
is often the first production step and always the backbone of
the animation, we opted to extend the screenplay language.
Specifically, we utilize an extension of the Fountain screen-
play markup language [12]. Fountain is a popular text-based
format that is used by multiple screenwriter tools to generate
screenplays in a standardized format.

Screenplay formats have a well defined structure for scene
changes, character dialogue, and action [31]. The format has
clear semantics to both capitalization and spacing (line breaks
and indentation). For example, a scene change (all capitals) is
unindented and of the form: “EXT. WRITERS STORE - DAY”
indicating an external (outdoor) scene at the writer’s store
during the day. Character speech is indicated by a centered and
capitalized character name followed by lines of indented text
representing the dialogue. Fountain simplifies the creation of
this format by automatically applying the correct indentation,
highlighting, etc. For certain actions (e.g., scene changes or
knowing which character is speaking), TakeToons utilizes the
standard script format.

For non-standard events, we use the double-bracketing syntax
which standard Fountain parsers treat as a comment. Specifi-
cally, we use the format [[type:character-action]] where type
indicates the kind of event we are triggering (e.g., ‘motion’
for animation, ’camera’ for a camera change, and ’sound’ for
sound effects). The character and action are arguments to that
trigger. For example, “[[motion:Wilk-roar]]” indicates that the
Wilk character should perform the roar animation. Figure 4

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

666

Story Controller

Script
Parser

Speech
to Text

Performance
Capture

Animation
Engine

Command
Parser

Text
Aligner

Story Model

Fountain
Script

Speech

Performance

Figure 3. TakeToons Architecture. Our system takes a script, speech, and non-speech performance as input and generates an animated story. The key
novel components are the script parser, story model, and story controller. We use Google’s real-time speech-to-text API and Adobe Character Animator
to capture performance and map performances to animation.

(left) illustrates an example screenplay. By using this standard
form, TakeToons’ script language has the benefit that it is flex-
ible, familiar, and simultaneously backwards compatible with
existing script editing software.

Story model
The TakeToons script parser (detailed below) translates, or
‘compiles’, the script into a story model. A TakeToons story
model represents the sequence of events and actions that make
up the final animation. Internally, a model is structured as a
directed acyclic graph (DAG). Nodes represent dialogue in the
script, script markup (camera, motion, etc.), and scene changes.
The directed edges represent temporal relationships between
these story elements (the semantics are roughly ‘performance’
for a node and ‘perform after’ for an edge). The DAG structure
supports stories where actions overlap. For example, as a
character talks, he might gesture with his hands or pace back
and forth. At the same time, other characters in the scene may
react by changing their facial expressions. The story model
represents overlapping actions with nodes that share the same
parent, indicating that corresponding (parallel) actions should
occur after the parent node.

Figure 4 shows an example script and corresponding story
model. The story model supports several types of nodes, each
with an associated ‘play’ or ‘record’ action.

Speech nodes
Speech nodes correspond to lines in the script and are asso-
ciated with a specific character or the narrator. To generate
an animation, each speech node must have an audio recording
that can either be performed by the user or automatically gener-
ated through text-to-speech. We use Google’s Text-To-Speech
API [14] to synthesize speech for each script line.

Motion nodes
Motion nodes represent animation of a character. For example,
Jane’s line introducing the robot Evans (Figure 4) includes
a motion node where Evans walks in. This motion node is
triggered by Jane’s line, “This is Evans” (a speech node). The
animation itself may be performed directly by the user or
generated from a pre-defined library of motions. In particular,
our current implementation uses Adobe Character Animator

to generate motion in three ways: 1) automatic lip sync from
a voice performance, 2) head motion and expression changes
from a facial performance, and 3) triggerable, pre-authored
animation cycles for a given character. Most speech nodes
have an associated motion node (at the very least through lip
sync). However there are exceptions where a motion node
may overlap with multiple speech nodes or have no associated
motion (e.g. narrator speech).

Sound-effect nodes
Sound effects are non speech audio events (e.g., sound of rain
or thunder) that enhance the overall animation experience. In
TakeToons, sound effect nodes trigger pre-recorded audio files.

Scene nodes
Scene nodes correspond to scene changes in the script. These
nodes typically control the “set” (e.g., background artwork)
and indicate which characters should be present in the scene.

Script parser
To generate the story model, the script parser first constructs a
linear sequence of speech nodes from the lines in the script. To
implement this component we extended the open source Foun-
tain parser, Jouvence [18]. Within each parsed line, we create
a speech node for each contiguous sequence of words between
animation markup and connect adjacent nodes with directed
edges. For each speech node, we automatically generate lip
sync and facial performance motion nodes depending on the
capabilities of the character. For example, most characters sup-
port lip sync, some are rigged to support head/facial animation,
and the narrator does not support any motion. For each anima-
tion markup in the script, we create a corresponding motion
or sound-effect node with a directed edge originating from
the preceding speech node. Finally, we convert change-of-
scene indicators in the script to scene nodes and connect these
to the preceding speech node as well. The resulting graph
has a (largely) fish-bone structure where the chain of speech
nodes form the central spine with other nodes branching off
(see Figure 4b). Though the model can support more general
DAG configurations, in practice most story models follow this
general pattern.

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

667

INT. LAB JANE

[[motion:jane-goggles_off]] I am Jane
and I love building robots.

I also like to travel.

JANE

[[motion:jane-raise_hand]] This is Evans.
[[motion:evans-walk_short]] He would make

a great travel companion

Start

Scene: LAB

Speech: “I am Jane
and I love building
robots. I also like to
travel”

Speech : “This is Evans”

Motion: jane-raise_hand

...

...

SCRIPT EVENT MODEL

Motion: jane-goggles_off

Speech : “He would
make a great travel
companion”

Motion:evans-walk_short
1

3

2

4

a b

Motion: jane-lip-sync

Motion: jane-lip-sync Motion: jane-lip-sync

Figure 4. (a) A snippet of an augmented TakeToons script with scene information (1), character headings (2), dialogue (4), and animation markup (3).
(b) The corresponding story model representation of the script.

The script itself can be changed even after recording has
started. If changes result in new story nodes that require
performance, the actor can record them. If a line or event is
removed from the script, the corresponding node(s) can also
be removed. By “replaying” the recorded story model (see
below) the new animation will be re-rendered.

Story controller
The story controller enables recording and playback of the
story based on real-time speech and performance input. It
consists of a command parser, a text aligner, and a ‘playhead’
that points to the current active node(s) within the story model.
The story controller ‘listens’ for both dialogue (i.e., record)
and commands (i.e., directorial interactions). When in record
mode, the controller actively attempts to align whatever the
animator says against the script. If the controller believes
there is a misalignment (i.e., the animator appears to have
said something not in the script) the system will attempt to
understand the mismatched text as a command (e.g., ‘stop
recording’).

Script aligner
When the system enters the recording mode, the story con-
troller expects subsequent speech to be a vocal performance.
In this mode, the script aligner takes over and performs text
alignment between the transcribed speech and the script seg-
ment associated with the active speech node that is being
recorded. We use a simple alignment algorithm that tries to
match each transcribed word in sequence. To account for tran-
scription errors, the aligner performs fuzzy matching with a
configurable amount of tolerance (default of two words). This
both ensures that the system works even if the voice recog-
nition system makes mistakes and to support performer ad
libbing. To give the user real-time feedback while they are
performing, the system updates the teleprompter view by high-
lighting each word that is successfully matched. When the
aligner matches the last word in a speech node, the controller
traverses the story model DAG and automatically moves the
playhead to the next set of nodes. If there is a misalignment,
the controller stops recording, and control is handed back to
the command parser (described below).

While we currently use Google’s real-time speech-to-text tran-
scription, this can be replaced with alternative engines. In

particular, a forced-alignment speech recognizer (e.g., [22])
may be effective, as it performs an alignment against a known
script given an audio signal rather than attempting to decode
the speech directly. However, because most algorithms of this
type are off-line, and we require real-time alignment, we leave
this extension to future work.

Playing and recording
Playing a story node plays any recorded content, auto-
generated motion or synthesized audio. Recording a story
node replaces any existing recording with a new performance.
When nodes finish playing or recording, the story controller
moves the playhead to the next node. In the record state, each
node converts the user performance into recorded audio (for
speech nodes) or animation content (for motion nodes). For
scene nodes, sound-effect nodes, and motion nodes that trigger
pre-authored animation cycles, recording simply specifies the
exact time when the corresponding animation event should
occur. In the play state, each node plays its recorded content at
the appropriate time based on the story model graph structure.
For unrecorded speech nodes, playback uses the synthesized
speech. The system skips any unrecorded motion nodes that
require an explicit user performance.

Figure 5 demonstrates different play/record configurations of
a story model with two characters Jane and Evans. With the
simplest, basic recording (Figure 5a), the playhead moves
line by line (i.e., node by node) from the start and records
the associated performance. This will record the dialogue
and animation regardless of who the character is. With single
character animation (b), the story model is configured to only
record a single character’s performance (e.g., only Evans and
not Jane). As the playhead moves across the nodes, those not
associated with Evans are played (e.g., previously recorded
lines or animations) but Evans’ are recorded. During a retake
for Evans’ line (c), the playhead jumps back to the appropri-
ate node and recording/playback proceeds from there. When
layering a performance (d), playback and recording are done
simultaneously. In this case, we are layering Evans perfor-
mance for line 1 (he’s responding to something Jane is saying).
Jane’s line is played while the actor’s performance for Evans
is simultaneously recorded.

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

668

Start
Recording

Start

Lets record
Evans

Start

Start

Cut.
Lets try that
again

Lets layer
Evans on L1

R R R

RP P

P

P

P

P R

Start P

Start P

P

P

P P

P

Playhead current position

(d) Layering Performance

(c) Retake

(b) Single Character Recording

(a) Basic Recording

R R R

P R

Playhead proceeds from start, recording all nodes (all set to P)

Playhead proceeds from start, playing P nodes, recording R

Playhead currently recording Evans’ line (partial line recorded)

Playhead stops and moves back to re-record Evans’ line

P

Jane’s performance Evans’ performance

R

Recording completed

R(ecord)/P(lay)

P(lay)

Playhead directive

dialogue

non-dialogue

Node type

R

R

P P

RP P

R Playhead will play Jane’s
performance and record Evans’

P

Figure 5. Story model states for different animation commands. Each
node of the model can be set to record or play (or skip) based on the
performance type. As the playhead moves along the DAG, those nodes
that are to be recorded are captured from the actor’s performance.
Nodes that are set to play (e.g., pre-recorded dialogue, timed animations,
sounds, scene changes, etc.) are ‘performed’ by the system. In this dia-
gram the nodes in the center of each DAG are speech nodes.

Command parser
While TakeToons supports most interactions through the in-
terface, it can also handle non-dialogue voice commands for
remote ‘directing.’ The command parser maps (non-dialogue)
transcribed speech input to a set of pre-defined commands.
Internally, we implement a template look-up that extends [23]
(a similar model to Amazon’s Echo skills), to define a set of ex-
ample phrases along with corresponding intents (play, record,
retake, layer, stop). Command phrases may also contain place-
holder tags for certain words that gets replaced during parsing.
For example, the retake template for a specific line is: “Lets

redo line [‘ line-number’, ‘four’].” Here ‘[“ line-number”]’ is
the tag and ‘four’ is the placeholder text. During performance,
the speech command might be “Lets redo line two” , when
parsed, ‘two’ is tagged as the line-number. This information is
used for executing the intent– retake.

When the transcribed speech matches a command, the con-
troller updates the playhead and the state of each story node to
either play or record, depending on the command. When ap-
propriate, TakeToons infers the context of the command. For
example, in Figure 5c, the animator says “retake” or “let’s try
again” when recording line two. Without needing to specify
which line to retake, the playhead moves back to start of line
two, and all events in that node are set for recording.

TakeToons supports both navigation commands and recording
commands. Navigation commands include “Go to where
[character] says [dialogue],” “Let’s redo last line,” “Let’s
redo line [line number]”, “Let’s layer [character] on line
[line number],” “Play from beginning”. Recording commands
include “Start recording,” “Stop recording,” “Let’s record
[character name],” “Cut”. If the transcript does not match
dialogue, or a known command, an error message is displayed.

Performance capture and animation
TakeToons uses Adobe Character Animator’s performance cap-
ture and animation engines. For performance capture, Charac-
ter Animator uses a live camera feed to record facial perfor-
mances and a microphone to record speech. The animation
engine automatically maps the facial performances to head
motion and expression changes and converts the speech input
into lip sync (i.e., mouth motions) for rigged 2D characters.
Character Animator also supports the creation of pre-authored,
triggerable animation cycles for any character. TakeToons
leverages all of this functionality to generate the live anima-
tion preview as the user records or plays the story model.

Furthermore, while our user interface does not expose a tradi-
tional animation timeline, our story model does map directly
to a timeline with multiple tracks for different characters and
segments that correspond to each recorded performance. In
fact, our system maintains such a timeline, which the user can
access and edit within Character Animator at any point. As
noted in the User Experience section, working directly with
the timeline may be useful for refining the animation. Timing
edits in the Character Animator timeline are propagated back
to the story model. When a segment is moved in time, a time
change ‘delta’ is saved to the corresponding event node. Dur-
ing subsequent playback and performances, TakeToons factors
in these edits when triggering animations.

RESULTS
We used TakeToons to generate three animated stories, as
shown in Figure 6. The three are representative of differ-
ent classes of animated stories and involve different kinds of
acting, animation, and recording strategies. One story (Fig-
ure 6b) includes a single red monster character delivering a
monologue in a similar style to animated interviews [4] and
monologues [32]. The other two examples are more traditional
multi-character stories. In total, the three stories involve six
different characters performed by two actors. We obtained the

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

669

Figure 6. Example animations generated using TakeToons

characters (artwork and rigging) from the set of default assets
distributed with Character Animator.

We designed the stories to include a range of common an-
imation effects. All examples involve speaking characters
whose mouths move based on the voice performances of the
actors. In addition, we added head movements and expression
changes to most characters (via facial performance) adding life
to their motions. We also made extensive use of pre-defined
animations, almost all of which were bundled with the char-
acter artwork. For example, in the red monster monologue,
the script references several short cycling animations like fire
and a heart that appear above the character’s head, as well
as background props that help illustrate what she is saying.
In the Jane and Evans story (Figure 6c), Jane uses various
hand gestures to punctuate her lines. At the end of the three
monsters story (Figure 6a), we play a longer jetpack anima-
tion over the blue Ramirez character, who dreams of building
such a device to impress his friends. The stories also trigger
pre-defined camera angles and sets to create shot boundaries
and scene changes. By adding all of these animations directly
into the scripts, TakeToons makes it possible to produce these

effects via the vocal performances alone, rather than through
low-level manual editing and post-processing steps.

We also leveraged the layering functionality of TakeToons.
In the three monsters story, we first recorded the vocal per-
formances for all three characters. Then, we layered a facial
performance of Ramirez recoiling as the green monster, Wilk,
breathes fire in his direction. By allowing users to layer more
freeform or improvised performances on top of pre-defined
animations, TakeToons provides expressive control over the
details of individual motions and character interactions. The
combination of layering and automatically triggered anima-
tions gives content creators the option of allowing actors to
provide vocal performances that control the timing of care-
fully crafted pre-defined animations. This flexibility in our
approach makes it general enough to support a variety of ani-
mated stories across many different genres and visual styles.

INFORMAL EVALUATION
To gain insights on the potential impact of our approach for
real animation workflows, we conducted informal feedback
sessions with four professional animators. Three participants

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

670

work primarily on 2D animation, and the fourth focuses on 3D
animation with some 2D segments. One of the 2D animators
produces largely unscripted content that involves improvised
conversations between himself and a collaborator. He typi-
cally does almost all of the production by himself. The other
three animators focus on scripted content and have worked
on production teams of various sizes. All animators had prior
experience with performance-based animation systems.

At the beginning of each session, we described the overall
workflow of our approach. As part of this description, we
showed animators the Jane and Evans characters and their
script (Figure 6c). We loaded the story script into our system
and demonstrated how to issue commands and record indi-
vidual lines. After this introduction, we asked participants to
produce animated content for the story using the system. Fig-
ure 2 shows the arrangement of the script view and stage view
that we used in the study. Finally, we conducted a freeform
interview where the animators commented on their overall
impressions and in what scenarios they would find the Take-
Toons’ script-based workflow to be useful. Each session lasted
roughly one hour.

Feedback
All participants said that our script-based workflow would
be useful for animation production. The three who work on
scripted content were especially enthusiastic. They felt that
TakeToons could make it much faster to generate an initial
cut of the animation. For some applications (e.g., kids’ shows
with simple animations, instructional content), they said that
this output would likely be very close to the final content. For
larger budget productions, TakeToons could streamline the
creation of rough cuts and thus enable more efficient itera-
tions. Among these animators, there was a consensus that
adding animation annotations to the script was worth the small
additional up-front effort given the downstream benefits in
producing the animated content. They also noted that seeing
a live preview of the animation while reading the script is
valuable because it gives voice actors useful context for the
characters and the scene, which they can incorporate into their
performances. The animator who does not use scripts was
uncertain if TakeToons would benefit his existing workflows,
but believed it could help save time in scripted scenarios.

During the interviews, the animators proposed some interest-
ing usage scenarios for TakeToons. One animator noted that he
often works with pre-recorded audio from various voice actors.
In this setting, he was excited to use TakeToons as a way to
generate the animated content using the recorded speech as in-
put. In addition to making it much faster to obtain a rough cut,
he felt that it would be easier for him to identify and fix small
animation errors (e.g., lip sync) while watching the real-time
preview. Another animator noted the benefits of TakeToons
for collaborative projects, where multiple performers and an-
imators work on different parts of the story. By supporting
out-of-order recording and layering, our approach makes it
possible for each collaborator to focus on their specific task
while seeing other auto-generated (i.e., using text-to-speech)
or previously recorded performances for context.

Regarding additional features, all but one of the participants
suggested that the teleprompter be overlaid on or near the stage
where the animation occurs. This would make it easier for the
actor to read their lines while also seeing the corresponding
animations. One animator even proposed using word bubbles
over the characters on stage as a way to display the lines. A
related suggestion was to provide real-time guidance for the
desired pacing for each line as the user reads. These guides
could be generated based on durations of the corresponding
animation events (e.g., a triggered animation cycle may take
2 seconds to complete), or explicitly annotated in the script.
Finally, one animator suggested a visual interface for adding
the various annotations to the script. For example, Character
Animator has a panel that shows all of the pre-defined anima-
tions for each character. The participant wanted the option of
dragging these animation triggers directly onto the relevant
parts of the script.

Overall, we found the feedback to be very encouraging. De-
spite occasional speech recognition errors and some latency
in our prototype implementation, the general sentiment was
very positive. That said, it would certainly be valuable to con-
duct a larger, formal evaluation that provides more concrete
validation for the approach.

DISCUSSION

Utility of TakeToons
Our implementation of TakeToons is centered around a per-
sistent story-model that binds script-writing with performance
capture and post-processing edits. This approach offers numer-
ous advantages for both individual animators as well as conven-
tional production teams. For individual animators, TakeToons
provides a unified interface for performing and editing that can
be controlled through voice-based commands. This minimizes
the task switching cost between performing and controlling
the animation. It also gives authors the freedom to refine the
script and low-level animation details at any point in the pro-
duction process. In other words, TakeToons provides greater
efficiency and flexibility to ‘one-man-band’ productions.

For professional teams (with separate writers, performers, and
editors), TakeToons provides a consistent (script-based) struc-
ture that makes it easy to share partial work, coordinate tasks,
and iterate without having to redo all the downstream author-
ing work. For example, two or more actors can coordinate
synchronous and asynchronous recording of multiple parts
directly into a rough-cut. The script writer can make changes
to the script based on an actor’s voice performance without
losing all downstream changes (e.g., substitute certain words
based on the actor’s pronunciation). Animation designers can
modify detailed animation properties based on performances
(e.g., distance and intensity of fire animation), and edit the
sequence and timing of animations via the script or timeline
without requiring actors to rerecord all their performance. As
suggested in our feedback with animators, such collaborative
editing and production capabilities can be useful in profes-
sional settings.

Finally, for novice animators, TakeToons offers a streamlined
workflow for creating animations. For instance, given a script

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

671

and animation assets, parents can create their own renditions
of popular children’s stories (e.g., The Three Little Pigs). This
allows them to control the pace of the story, provide a more
familiar voice to characters, and even engage their children in
animation creation.

Limitations & Future Work
In our current instantiation of TakeToons we have mainly
focused on those animations that involve scripted speech per-
formances (i.e., dialogue and narration). While speech is a
key component for many animations, not all animated stories
contain spoken performance. Further, while we handle mi-
nor variations to scripted speech performance through fuzzy
matching, we currently do not support extensive improvisa-
tions. However, these limitations can be handled in the future
by extending our story model. For example, by mapping ani-
mation gestures and speech phrases to other non-performance
events, the story model can be generated in real-time using
an indexed look-up table. As an extension, to support inter-
leaved editing and performance, the teleprompter view can be
replaced with an alternate visualization such as storyboards,
glyphs, or node-diagrams. This will allow for voice based
control by directly referencing those elements, and can be
triggered through a ‘wake-word’ (for ad libbing).

A second area for future work is to expand our focus beyond
the end-user experience of professional animators. As noted
earlier, while novice animators can work with pre-defined as-
sets, understanding the script syntax for customization and
editing can be a challenge. Future work can look at improv-
ing the script writing experience with features such as auto-
complete or allowing the writer to highlight a piece of dialogue
and choosing an animation that fits with the selection.

A limitation in performance systems, and one that impacts
TakeToons, is that while writers and animators can directly
edit the script after performance, these edits may introduce
discontinuities in the cuts. For example, if a character jumps,
walks, and falls and the walk is deleted, the final animation
will include a sharp cut between a jump and fall at different
locations. Future work can explore the best way to accommo-
date this type of editing. Further, the current interface does not
include timing information, which can be useful in guiding
performance and scripting animation. The TakeToons script
can be extended with additional markup [33]. Other possi-
ble extensions may include supporting the review of multiple
takes and authoring of stories with different moods [20].

Finally, we believe the core approach of TakeToons has ap-
plications beyond animation production. Writing a script is a
key step in a wide variety of live and recorded performances,
including educational lectures, business presentations, and
conference videos. A natural extension of TakeToons would
be to link scripts with the relevant metadata and triggered
events for these other types of performances. For example,
slide presentations could be enhanced by leveraging script
annotations that automatically trigger slide transitions and ani-
mations based on the presenter’s performance [25]. In general,
we believe our approach could benefit many script-driven au-
thoring processes by enabling workflows that integrate and
interleave the various steps of the production pipeline.

CONCLUSION
In this work, we present an approach for integrating and inter-
leaving animation production workflows through an annotated
script and performance-based animation. TakeToons com-
piles script metadata and annotations into a story model, and
a story controller interprets and aligns performance with the
story model. Finally, TakeToons assembles the story model
recordings into an animated movie. Our approach supports a
broad array of animation scenarios including individual per-
formance, collaborative authoring, layered animation, and
semi-automated story telling. We demonstrate how different
types of common animation type can be constructed, and user
feedback from professionals confirms the practical benefits of
this approach in real productions.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our study participants
for their time and helpful feedback. We also thank Jovan
Popović and Dave Simons for their advice and input and Dan
Ramirez for his help with the demo video.

REFERENCES
1. Adobe. 2018. Character Animator CC. (2018).

2. Connelly Barnes, David E. Jacobs, Jason Sanders, Dan B
Goldman, Szymon Rusinkiewicz, Adam Finkelstein, and
Maneesh Agrawala. 2008. Video Puppetry: A
Performative Interface for Cutout Animation. ACM Trans.
Graph. 27, 5, Article 124 (Dec. 2008), Article 124, 9
pages. DOI:http://dx.doi.org/10.1145/1409060.1409077

3. Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala.
2012. Tools for Placing Cuts and Transitions in Interview
Video. ACM Trans. Graph. 31, 4, Article 67 (July 2012),
8 pages. DOI:
http://dx.doi.org/10.1145/2185520.2185563

4. Blank on Blank. 2017. (2017). https://blankonblank.org/

5. Matthew Brand. 1999. Voice Puppetry. In Proceedings of
the 26th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’99). ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 21–28. DOI:
http://dx.doi.org/10.1145/311535.311537

6. Werner Breitfuss, Helmut Prendinger, and Mitsuru
Ishizuka. 2007. Automated Generation of Non-verbal
Behavior for Virtual Embodied Characters. In
Proceedings of the 9th International Conference on
Multimodal Interfaces (ICMI ’07). ACM, New York, NY,
USA, 319–322. DOI:
http://dx.doi.org/10.1145/1322192.1322247

7. Ian Buck, Adam Finkelstein, Charles Jacobs, Allison
Klein, David H. Salesin, Joshua Seims, Richard Szeliski,
and Kentaro Toyama. 2000. Performance-Driven
Hand-Drawn Animation. In NPAR 2000 : First
International Symposium on Non Photorealistic
Animation and Rendering. 101–108.

8. Juan Casares, A. Chris Long, Brad A. Myers, Rishi
Bhatnagar, Scott M. Stevens, Laura Dabbish, Dan Yocum,

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

672

http://dx.doi.org/10.1145/1409060.1409077
http://dx.doi.org/10.1145/2185520.2185563
https://blankonblank.org/
http://dx.doi.org/10.1145/311535.311537
http://dx.doi.org/10.1145/1322192.1322247

and Albert Corbett. 2002. Simplifying Video Editing
Using Metadata. In Proceedings of the 4th Conference on
Designing Interactive Systems: Processes, Practices,
Methods, and Techniques (DIS ’02). ACM, New York,
NY, USA, 157–166. DOI:
http://dx.doi.org/10.1145/778712.778737

9. Michael M Cohen and Dominic W Massaro. 1993.
Modeling coarticulation in synthetic visual speech. In
Models and techniques in computer animation. Springer,
139–156.

10. Darren Cosker and James Edge. 2009. Laughing, crying,
sneezing and yawning: Automatic voice driven animation
of non-speech articulations. Proceedings of Computer
Animation and Social Agents, CASA (2009), 225–234.

11. Mira Dontcheva, Gary Yngve, and Zoran Popović. 2003.
Layered acting for character animation. In ACM
Transactions on Graphics (TOG). ACM, 409–416.

12. Fountain. 2018. A markup language for screenwriting.
http://fountain.io. (2018). Accessed: 2018-04-01.

13. Google. 2018a. Cloud Speech API.
https://cloud.google.com/speech/. (2018).

14. Google. 2018b. Cloud Text-To-Speech API.
https://cloud.google.com/text-to-speech/. (2018).

15. Ricardo Gutierrez-Osuna, Praveen K Kakumanu, Anna
Esposito, Oscar N Garcia, Adriana Bojórquez, José Luis
Castillo, and Isaac Rudomín. 2005. Speech-driven facial
animation with realistic dynamics. IEEE transactions on
multimedia 7, 1 (2005), 33–42.

16. Judith H Haag and Hillis R Cole. 1980. The Complete
Guide To Standard Script Formats–Part 1: Screenplays.
(1980).

17. Kaveh Hassani and Won-Sook Lee. 2016. Visualizing
natural language descriptions: A survey. ACM Computing
Surveys (CSUR) 49, 1 (2016), 17.

18. Jouvence. 2018. Fountain parser.
https://bolt80.com/jouvence/. (2018).

19. Gierad P Laput, Mira Dontcheva, Gregg Wilensky,
Walter Chang, Aseem Agarwala, Jason Linder, and Eytan
Adar. 2013. PixelTone: a multimodal interface for image
editing. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM,
2185–2194.

20. Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh
Agrawala. 2017. Computational Video Editing for
Dialogue-driven Scenes. ACM Trans. Graph. 36, 4,
Article 130 (July 2017), 14 pages. DOI:
http://dx.doi.org/10.1145/3072959.3073653

21. Marcel Marti, Jodok Vieli, Wojciech Witoń, Rushit
Sanghrajka, Daniel Inversini, Diana Wotruba, Isabel
Simo, Sasha Schriber, Mubbasir Kapadia, and Markus
Gross. 2018. CARDINAL: Computer Assisted Authoring
of Movie Scripts. In 23rd International Conference on
Intelligent User Interfaces (IUI ’18). ACM, New York,
NY, USA, 509–519. DOI:
http://dx.doi.org/10.1145/3172944.3172972

22. Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal Forced Aligner: Trainable Text-Speech
Alignment Using Kaldi. In Proc. Interspeech 2017.
498–502. DOI:
http://dx.doi.org/10.21437/Interspeech.2017-1386

23. Nate Parrott. 2018. Commanding.
https://github.com/nate-parrott/commanding. (2018).

24. Amy Pavel, Dan B Goldman, Björn Hartmann, and
Maneesh Agrawala. 2015. Sceneskim: Searching and
browsing movies using synchronized captions, scripts
and plot summaries. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software &
Technology. ACM, 181–190.

25. Hans Rosling. 2010. Hans Rosling’s 200 Countries, 200
Years, 4 Minutes - The Joy of Stats.
https://www.youtube.com/watch?v=jbkSRLYSojo. (2010).

26. Steve Rubin, Floraine Berthouzoz, Gautham J. Mysore,
and Maneesh Agrawala. 2015. Capture-Time Feedback
for Recording Scripted Narration. In Proceedings of the
28th Annual ACM Symposium on User Interface Software
& Technology (UIST ’15). ACM, New York, NY, USA,
191–199. DOI:
http://dx.doi.org/10.1145/2807442.2807464

27. Steve Rubin, Floraine Berthouzoz, Gautham J. Mysore,
Wilmot Li, and Maneesh Agrawala. 2013. Content-based
Tools for Editing Audio Stories. In Proceedings of the
26th Annual ACM Symposium on User Interface Software
and Technology (UIST ’13). ACM, New York, NY, USA,
113–122. DOI:
http://dx.doi.org/10.1145/2501988.2501993

28. Jinhong Shen, Terumasa Aoki, and Hiroshi Yasuda. 2004.
EMM Software System : Electronic Movie Making from
Screenplay. IPSJ SIG Notes 2004, 86 (aug 2004), 51–56.
https://ci.nii.ac.jp/naid/110002780681/en/

29. Hijung Valentina Shin, Wilmot Li, and Frédo Durand.
2016. Dynamic Authoring of Audio with Linked Scripts.
In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 509–516. DOI:
http://dx.doi.org/10.1145/2984511.2984561

30. David J Sturman. 1998. Computer puppetry. IEEE
Computer Graphics and Applications 18, 1 (1998),
38–45.

31. D. Trottier. 2014. The Screenwriter’s Bible: A Complete
Guide to Writing, Formatting, and Selling Your Script.
Silman-James Press.

32. Trump Monologue from Our Cartoon President
(Showtime). 2018. (2018).
https://www.youtube.com/watch?v=2uqjAbzrM2I

33. W3C. 2018. Speech Synthesis Markup Language.
https://en.wikipedia.org/wiki/Speech_Synthesis_Markup_

Language. (2018).

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

673

http://dx.doi.org/10.1145/778712.778737
http://fountain.io
https://cloud.google.com/speech/
https://cloud.google.com/text-to-speech/
https://bolt80.com/jouvence/
http://dx.doi.org/10.1145/3072959.3073653
http://dx.doi.org/10.1145/3172944.3172972
http://dx.doi.org/10.21437/Interspeech.2017-1386
https://github.com/nate-parrott/commanding
https://www.youtube.com/watch?v=jbkSRLYSojo
http://dx.doi.org/10.1145/2807442.2807464
http://dx.doi.org/10.1145/2501988.2501993
https://ci.nii.ac.jp/naid/110002780681/en/
http://dx.doi.org/10.1145/2984511.2984561
https://www.youtube.com/watch?v=2uqjAbzrM2I
https://en.wikipedia.org/wiki/Speech_Synthesis_Markup_Language
https://en.wikipedia.org/wiki/Speech_Synthesis_Markup_Language

34. Zhijin Wang and Michiel van de Panne. 2006. Walk to
here: a voice driven animation system. In Proceedings of
the 2006 ACM SIGGRAPH/Eurographics symposium on
Computer animation. Eurographics Association,
243–251.

35. Nora S Willett, Wilmot Li, Jovan Popovic, and Adam
Finkelstein. 2017. Triggering Artwork Swaps for Live
Animation. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology.
ACM, 85–95.

Session 12: Modeling and Animation UIST 2018, October 14–17, 2018, Berlin, Germany

674

	Introduction
	Related Work
	Scripts and animation
	Performance animation systems
	Speech commands for navigation and editing

	User Experience
	Script
	Voice performance
	Interleaved performance and editing
	Layering animation
	Character-by-character performance
	Wrapping up

	System Architecture
	TakeToons script language
	Story model
	Speech nodes
	Motion nodes
	Sound-effect nodes
	Scene nodes

	Script parser
	Story controller
	Script aligner
	Playing and recording
	Command parser

	Performance capture and animation

	Results
	Informal Evaluation
	Feedback

	Discussion
	Utility of TakeToons
	Limitations & Future Work

	Conclusion
	Acknowledgments
	References

